Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T09:35:55.527Z Has data issue: false hasContentIssue false

General Active Quality Factor Control of Electromechanical Quartz Resonator

Published online by Cambridge University Press:  31 January 2011

Junghoon Jahng
Affiliation:
kingjjh1@snu.ac.kr, Seoul National University, Physics and Astronomy, Seoul, Korea, Republic of
Manhee Lee
Affiliation:
daybreak25@empal.com, Seoul National University, Physics and Astronomy, Seoul, Korea, Republic of
Wonho Jhe
Affiliation:
whjhe@snu.ac.kr, Seoul National University, Physics and Astronomy, Seoul, Korea, Republic of
Get access

Abstract

We present generalized theoretical analysis and experimental realization of active quality factor control for the self-oscillating quartz tuning-fork (QTF). The quality factor Q and resonance frequency can be controlled by adding a phase shifted signal of proper gain with respect to the QTF motion. It is demonstrated that the analysis of QTF can be extended to other quartz resonators which are analyzed by an equivalent circuit-a combination of a parallel circuit of an harmonic L-R-C and a stray capacitance C0. Finally, we suggest the prospect of several applications by using the active Q control of QTF such as increasing force sensitivity, reducing scanning time in scanning probe microscopy, and feedback cooling of electromechanical resonator.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Karrai, K. and Grober, R. D. Appl. Phys. Lett. 66, 1842 (1995).Google Scholar
2 Yu, Y.J. Jeong, I. T. Woo, J. Ch., and Jhe, W. Appl. Phys. Lett. 87, 143108 (2005).Google Scholar
3 Giessbl, F. J. Rev. Mod. Phys. 75, 949 (2003).Google Scholar
4 Seo, Y. Choe, H. and Jhe, W. Appl. Phys. Lett. 83, 1860 (2003).Google Scholar
5 Seo, Y. Hwang, C. S. and Jhe, W. Appl. Phys. Lett. 80, 4324 (2002).Google Scholar
6 Kim, K. Seo, Y. Jang, H. Chang, S. Hong, M.H. and Jhe, W. Nanotechnology 17, S201 (2006).Google Scholar
7 Giessibl, F. J. Hembacher, S. Herz, M. Schiller, Ch. and Mannhart, J. Nanotechnology 15, S79 (2004).Google Scholar
8 Heyde, M. Sterrer, M. Rust, H.P. and Freund, H.J. Appl. Phys. Lett. 87, 083104 (2005).Google Scholar
9 Antognozzi, M. Szczelkun, M. D. Humphris, A. D. L. and Miles, M. J. Appl. Phys. Lett. 82, 2761 (2003).Google Scholar
10 Rodriguez, T. R. and Garcia, R. Appl. Phys. Lett. 82, 4821 (2003).Google Scholar
11 Callaghan, F. D. Yu, X. Mellor, C. J. Appl. Phys. Lett. 81, 916 (2002).Google Scholar
12 Callaghan, F. D. Yu, X. Mellor, C. J. Appl. Phys. Lett. 87, 214106 (2005).Google Scholar
13 Holscher, H. Ebeling, D. Schwarz, U. D. J. Appl. Phys. Lett. 99, 084311 (2006).Google Scholar
14 Holscher, H. Schwarz, U. D. Appl. Phys. Lett. 89, 073117 (2006).Google Scholar
15 Ng, B. P. Zhang, Y. Kok, S. W. Soh, Y. C. Ultramicroscopy, 109, 291295 (2009).Google Scholar
16 Zelenka, J. Piezoelectric Resonators and Their Applications, Elsevier, New York, (1986).Google Scholar
17 Lee, M. Jahng, J. Kim, K. and Jhe, W. Appl. Phys. Lett., 91 (2), 023117 (2007).Google Scholar
18 Rychen, J. Ihn, T. Studerus, P. Herrmann, A. Ensslin, K. Hug, H. J. Schendel, P. J. A. van, and Guntherodt, H. J. Rev. Sci. Instrum. 71, 4 (2000).Google Scholar
19The follower (or inverter) is the active electrical component which produces a fixed phase lag of 0° (or 180°).Google Scholar
20 Jahng, J. Lee, M. Noh, H. Seo, Y. and Jhe, W. Appl. Phys. Lett. 91, 023103 (2007).Google Scholar
21 Choe, H. Hong, M.H. Seo, Y. Lee, K. Kim, G. Cho, Y. Ihm, J. and Jhe, W. Phys. Rev. Lett. 95, 187801 (2005).Google Scholar
22 Lee, M. Sung, B. Hashemi, N. and Jhe, W. Faraday Disc., 141, 415421 (2009).Google Scholar