Hostname: page-component-594f858ff7-r29tb Total loading time: 0 Render date: 2023-06-10T03:21:45.747Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

GaN P-N Structures Fabricated by Mg ION Implantation

Published online by Cambridge University Press:  15 February 2011

E.V. Kalinina
Affiliation:
MSRCE, Howard University, Washington, D.C., USA; TDI, Inc., Gaitherburg, MD, USA.
V.A. Solov'ev
Affiliation:
MSRCE, Howard University, Washington, D.C., USA; TDI, Inc., Gaitherburg, MD, USA.
A.S. Zubrilov
Affiliation:
MSRCE, Howard University, Washington, D.C., USA; TDI, Inc., Gaitherburg, MD, USA.
V.A. Dmitriev
Affiliation:
MSRCE, Howard University, Washington, D.C., USA; TDI, Inc., Gaitherburg, MD, USA.
A.P. Kovarsky
Affiliation:
Mekhanobr Analyt Institute, St. Petersburg, Russia
Get access

Abstract

In this paper we report on the first GaN p-n diodes fabricated by Mg ion implantation doping of n-type GaN epitaxial layers. Ion implantation was performed at room temperature. Implantation dose ranged from 1013 to 2 × 1016 cm2. After implantation samples were annealed for 10-15 s at a wide temperature interval from 600°C to 1200°C in flowing N2 to form p-type layers. Secondary ion mass spectroscopy, scanning electron microscopy with electron beam induced current and back scattered electron modes as well as current-voltage and capacitance-voltage measurements were used to study structural and electrical characteristics of the Mg implanted p-n structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., J. of Crystal Growth 170, 11 (1997).CrossRefGoogle Scholar
[2] Nakamura, A., Senoch, M., Iwasa, N., and Nagahama, S., Jap. J. Appl.Phys., 34, part 2, No 7a, L797 (1995).CrossRefGoogle Scholar
[3] Khan, M. Asif, Chen, Q., Skogman, R.A., Kuznia, J.N., Appl. Phys. Lett. 66 (16), 2046 (1995).CrossRefGoogle Scholar
[4] Molnar, R. J., Singh, R., and Moustakas, T.D., Appl. Phys. Lett. 66 (3), 268 (1995).CrossRefGoogle Scholar
[5] Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L 2112 (1989).CrossRefGoogle Scholar
[6] Kalinina, E.V., and Kholujanov, G.F., Inst. Phys. Conf. Ser. No 137: Chapter 6, 675 (1993).Google Scholar
[7] Akasaki, I., Amano, H., Koide, N., Kotaki, M., and Manate, K., Physica C 185, 428 (1993).CrossRefGoogle Scholar
[8] Perlin, P., Gorczyca, I., Christensen, N.E., Grzegory, I., Teisseyne, H., and Suski, T, Phys. Rev. B45, 13307 (1992).CrossRefGoogle Scholar
[9] Davis, R.F., Physica B 185, 1 (1993).Google Scholar
[10] Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 69 (16), 2364 (1996).CrossRefGoogle Scholar
[11] Pearton, S.J., Vartuli, C.B., Zolper, J.C., Yuan, C., and Stall, R.A., Appl. Phys. Lett. 67, 1435 (1995).CrossRefGoogle Scholar
[12] Binari, S.C., Dietrich, H.B., Keiner, G., Rowland, L.B., Doverspike, K., and Wickenden, D.K., J. Appl. Phys. 78, 3008 (1995).CrossRefGoogle Scholar
[13] Matocha, K., Chow, T.P., Lu, H., and Bhat, I., Abstracts ICSCIII-N'97, WeP-60, 461, Sweden (1997).Google Scholar
[14] Zolper, J.C., Shul, R.J., Baca, A.G., Wilson, R.G., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 68 (16), 2273 (1996).CrossRefGoogle Scholar
[15] Harima, H., Sakashita, H., Inoue, T., Nakashima, S., Abstracts ICNS'97, P1-27, 86, Japan (1997).Google Scholar
[16] Vassilevski, K.V., Sizov, V.E., Babanin, A.I., Yu. Melnik, Zubrilov, A.S., Inst. Phys. Cong. Ser. 142, 1027 (1996).Google Scholar