Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-18T18:56:21.367Z Has data issue: false hasContentIssue false

GaN Etching in BCl3/Cl2 Plasmas

Published online by Cambridge University Press:  10 February 2011

R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
C. I. H. Ashby
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
C. G. Willison
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
L. Zhang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
M. M. Bridges
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603, rjshul@sandia.gov
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
J. W. Lee
Affiliation:
Plasma-Therm, Inc., St. Petersburg, FL 33716
L. F. Lester
Affiliation:
University of New Mexico, Electrical Engineering, Albuquerque, NM
Get access

Abstract

GaN etching can be affected by a wide variety of parameters including plasma chemistry and plasma density. Chlorine-based plasmas have been the most widely used plasma chemistries to etch GaN due to the high volatility of the GaClx and NClx etch products. The source of Cl and the addition of secondary gases can dramatically influence the etch characteristics primarily due to their effect on the concentration of reactive Cl generated in the plasma. In addition, high-density plasma etch systems have yielded high quality etching of GaN due to plasma densities which are 2 to 4 orders of magnitude higher than reactive ion etch (RIE) plasma systems. The high plasma densities enhance the bond breaking efficiency of the GaN, the formation of volatile etch products, and the sputter desorption of the etch products from the surface. In this study, we report GaN etch results for a high-density inductively coupled plasma (ICP) as a function of BCl3:Cl2 flow ratio, dc-bias, chamber pressure, and ICP source power. GaN etch rates ranging from ∼100 Å/min to > 8000 Å/min were obtained with smooth etch morphology and anisotropic profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J. and Shul, R. J., in Gallium Nitride I, ed. Pankove, J. I. and Moustakas, T. D. (Academic Press, San Diego, 1998).Google Scholar
2. Harrison, W. A., Electronic Structure and Properties of Solids, (Freeman, San Francisco, 1980).Google Scholar
3. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., and Morkoc, H., Appl. Phys. Lett. 64, 887 (1994)Google Scholar
4. Shul, R. J., Kilcoyne, S. P, Crawford, M. Hagerott, Parmeter, J. E., Vartuli, C. B., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 66, 1761 (1995).Google Scholar
5. Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L. F., and Hersee, S. D., Appl. Phys. Lett. 68, 367 (1996).Google Scholar
6. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
7. Lee, H., Oberman, D. B., and Harris, J. S. Jr., Appl. Phys. Lett. 67, 1754 (1995).Google Scholar
8. Vartuli, C. B., Pearton, S. J., Lee, J. W., Hong, J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., Appl. Phys. Lett. 69, 1426 (1996).Google Scholar
9. Vartuli, C. B., MacKenzie, J. D., Lee, J. W., Abernathy, C. R., Pearton, S. J., and Shul, R. J., J. Appl. Phys. 80, 3705 (1996).Google Scholar
10. Shul, R. J., in GaN and Related Materials, ed. Pearton, S. J. (Gordon and Breach, NY 1997).Google Scholar
11. Shul, R. J., McClellan, G. B., Casalnuovo, S. A., Rieger, D. J., Pearton, S. J., Constantine, C., Barratt, C., Karlicek, R. F. Jr., Tran, C., and Schurman, M., Appl. Phys. Lett. 69, 1119 (1996).Google Scholar
12. Shul, R. J., Briggs, R. D., Han, J., Pearton, S. J., Lee, J. W., Vartuli, C. B., Killeen, K. P., and Ludowise, M. J., Mat. Res. Soc. Symp. Proc. 468, 355 (1997).Google Scholar
13. D'Asaro, L. A., DiLorenzo, J. L., and Fukui, H., IEEE Trans, Electron Devices ED–25, 5218 (1981).Google Scholar
14. Lee, Y. H., Kim, H. S., Kwon, W. S., Yeom, G. Y., Lee, J. W., Yoo, M. C., and Kim, T. I., J. Vac. Sci. Technol., in press.Google Scholar
15. Vartuli, C. B., Pearton, S. J., Lee, J. W., Hong, J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., Appl. Phys. Lett. 69, 1426 (1996).Google Scholar