Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-25T00:09:17.285Z Has data issue: false hasContentIssue false

Fracture Toughness of Two Cr2Hf+Cr Intermetallic Composites as a Function Temperature

Published online by Cambridge University Press:  15 February 2011

K. S. Ravichandran
Affiliation:
UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894
D. B. Miracle
Affiliation:
WL/MLLM, Materials Directorate, Wright Patterson AFB, OH 45433
M. G. Mendiratta
Affiliation:
UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894
Get access

Abstract

Fracture toughness as a function of temperature was evaluated for two Cr2Hf+Cr intermetallic composites, each in two different microstructural conditions. The proeutectic microstructures based on Cr-6.5Hf (at%) showed a significant increase in fracture toughness with an increase from room temperature to 600°C. The coarse microstructure obtained by heat treatment at 1500°C showed evidence of ductile behavior of Cr at a lower test temperature (200°C) relative to that of one heat treated at 1250°C (400'C). In the eutectic microstructures based on Cr-13Hf, only a small increase in fracture toughness at 600°C was seen. The results are analyzed in the light of fracture micromechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Elliot, C. K., Odette, G. R., Lucas, G. E. and Sheckherd, J. W.; in High Temperature/High Performance Composites, edited by Evans, A. G., Fishman, S. G. and Strife, J. R. (Mater. Res. Soc. Proc. 120, Pittsburgh, PA, 1988) pp. 95100.Google Scholar
2. Mendiratta, M. G., Lewandowski, J. J. and Dimiduk, D. M.; Metall. Trans. A, 22, 1573 (1991).Google Scholar
3. Carter, D. H. and Martin, P. L.; in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R. (Mater. Res. Soc. Proc. 195, Pittsburgh, PA, 1990) pp. 131137.Google Scholar
4. Subramanian, P. R., Mendiratta, M. G., Miracle, D. B.; Metall. Trans. A, In Press.Google Scholar
5. Shah, D. M. and Anton, D. L.; in Intermetallic Matrix Composites II, edited by Miracle, D.B., Anton, D. L. and Graves, J. A. (Mater. Res. Soc. Proc. 273, Pittsburgh, PA, 1992) pp. 385397.Google Scholar
6. Mazdiyasni, S. and Miracle, D. B.; in Ref. 3, pp. 155162.Google Scholar
7. Kumar, K. S. and Miracle, D, B.; J. Intermetallics, In Press.Google Scholar
8. Newkirk, J. W. and Sago, J. A.; in Ref. 3, pp. 183189.Google Scholar
9. Wilkinson, W. D.; Properties of Refractory Metals (Gordon and Breach, Publishers, NY, 1967) p. 5155.Google Scholar
10. Tietz, T. E. and Wilson, J. R.; Behavior and Properties of Refractory Metals, (Stanford University Press, Stanford, 1965), p. 17.Google Scholar
11. Binary Alloy Phase Diagrams Vol. 2, 2nd Edition, edited by Massalski, T. B., Okamoto, H., Subramanian, P. R. and Kacprzak, L. (Metals Park, OH, 1990) p. 1281.Google Scholar
12. Sully, A. H.; in Ductile Chromium and its Alloys, (American Society for Metals, Cleveland, 1957) p. 1426.Google Scholar
13. Hahn, G. T., Gilbert, A. and Jaffee, R. I.; in Refractory Metals and Alloys II. Edited by Semchyshen, M. and Perlmutter, I. (Interscience Publishers, NY, 1963), pp. 2363. Google Scholar
14. Ashby, M. F., Blunt, F. J. and Bannister, M.; Acta Metall., 37, 1847 (1989).Google Scholar
15. Ravichandran, K. S.; Scripta Metall. Mater., 26, 1389 (1992).Google Scholar