Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-06T19:53:28.599Z Has data issue: false hasContentIssue false

Fracture, Fatigue and Indentation Behavior of Pyrolytic Carbon for Biomedical Applications

Published online by Cambridge University Press:  15 February 2011

R. O. Ritchie
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
R. H. Dauskardt
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
W. W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
A. Strojny
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
E. Lilleodden
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

The fracture, fatigue and indentation properties of pyrolytic carbon, both as a monolithic material and as a coating on a graphite substrate, are described in light of its use for biomedical implant applications, specifically for the manufacture of mechanical heart valve prostheses. From the perspective of determining properties that are important for the prediction of safe structural lifetimes in such prostheses, it is found that by traditional engineering standards, pyrolytic carbon has low damage tolerance, i.e., fracture toughness values between 1 and 3 MPa√m and susceptibility to subcritical crack growth by both cyclic fatigue and stress-corrosion cracking (static fatigue). Subcritical crack-growth rates are evaluated in simulated physiological environments for both through-thickness “long” cracks, and for physically “small” surface cracks, the latter measurements being performed for cracks initiated at hardness indents. The unusual deformation characteristics of indentation in pyrolytic carbon are described based on instrumented microhardness indentation and scanning probe microscopy (AFM/STM) studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bokros, J. C., Akins, R. J., Shim, H. S., Haubold, A. D., and Agarural, N. K., in Petroleum Derived Carbons, eds. Deviney, M. D. and O'Grady, T. M. (American Chemical Society, Washington, DC, 1976) pp. 237–65.Google Scholar
2. Bokros, J. C., Carbon 15, 355 (1977).Google Scholar
3. Schoen, F. J., in Biocompatible Polymers, Metals and Composites, ed. Szycher, M. (Lancaster, Technomic, 1983) pp. 239–61.Google Scholar
4. Haubold, A. D., Yapp, R. A., and Bokros, J. C., in Encyclopedia of Materials Science and Engineering, ed. Bever, M. B. (Pergamon, Oxford/MIT Press, Cambridge, 1986) vol.1, pp. 514–20.Google Scholar
5. Dauskardt, R. H. and Ritchie, R. O., in An Introduction to Bioceramics, eds. Hench, L. L. and Wilson, J. (World Scientific Publ. Co., Singapore, 1993), pp. 261–79.Google Scholar
6. Kotlensky, V. V., Trans. Met. Soc. AIME, 223, 830 (1965).Google Scholar
7. Kotlensky, V. V. and Martens, H. E., J. Am. Ceram. Soc., 48, 135 (1965).Google Scholar
8. Schoen, F. J., Carbon, 11, 413 (1973).Google Scholar
9. Shim, H. S., Biomaterials and Medical Devices: Artificial Organs, 2, 55 (1974).Google Scholar
10. Kaae, J. L., Gulden, T. D., and Liang, S., Carbon, 10, 701 (1972).Google Scholar
11. Bokros, J. C., LaGrange, L. D., and Schoen, F. J., in Chemistry and Physics of Carbon, ed., Walker, P. L. (Dekker, New York, NY, 1972) pp. 103–71.Google Scholar
12. Kaae, J. L., Carbon, 13, 51 (1975).Google Scholar
13. Pollmann, E., Pelissier, J., Yust, C. S., and Kaae, J. L., Nuclear Technol., 35, 301 (1977).Google Scholar
14. Larrieu, A. J., Puglia, E., and Allen, P. A., Ann. Thorac. Surg., 34, 192 (1982).Google Scholar
15. Lindblom, D., Rodriguez, L., and Björk, V. O., J. Thorac. Cardiovasc. Surg., 97, 95 (1989).Google Scholar
16. Kelpetko, V., Moritz, A., Mlczoch, J., Schurawitzki, H., Domanig, E., and Wolner, E., J. Thorac. Cardiovasc. Surg., 97, 90 (1989).Google Scholar
17. Ritchie, R. O., Dauskardt, R. H., and Pennisi, F. J., J. Biomed Mater. Res., 26, 69 (1992).Google Scholar
18. Ritchie, R. O. and Lubock, P., J. Biomech. Eng., Trans. ASME, 108, 153 (1986).Google Scholar
19. Chwirut, D. J. and Regnault, W. F., Med Prog. thr. Tech., 14, 193 (1988).Google Scholar
20. Ritchie, R. O., J. Heart Valve Disease, 4 (1995) in press.Google Scholar
21. Ritchie, R. O., Dauskardt, R. H., Yu, W., and Brendzel, A. M., J. Biomed Mater. Res., 24, 189 (1990).Google Scholar
22. Ritchie, R. O., Dauskardt, R. H., and Brendzel, A. M., in Bioceramics. Volume 6 (Proc. 6th Intl. Symp. Ceramics in Medicine), eds. Ducheyne, P. and Christiansen, D. (Butterworths-Heinemann, 1993) pp. 229–36.Google Scholar
23. Ritchie, R. O. and Dauskardt, R. H., “Fracture toughness and subcritical crack-growth behavior of Pyrolite in simulated physiological environments”, Technical Report to CarboMedics, Inc., November (1990), cited in ref 34.Google Scholar
24. Gilpin, C. B., Haubold, A. D., and Ely, J. L., in Bioceramics. Volume 6 (Proc. 6th Intl. Symp. Ceramics in Medicine), eds. Ducheyne, P. and Christiansen, D. (Butterworths-Heinemann, 1993) pp. 217–23.Google Scholar
25. Dauskardt, R. H., Ritchie, R. O., Takemoto, J. K., and Brendzel, A. M., J. Biomed Mater. Res., 28, 791 (1994).Google Scholar
26. More, R. B., Haubold, A. D., and Beavan, L. A., Trans. Soc. Biomater., 15, 180 (1989).Google Scholar
27. Lawn, B. R., Evans, A. G., and Marshall, D. B., J. Am. Ceram. Soc., 63, 574 (1980).Google Scholar
28. Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc., 64, 533 (1981).Google Scholar
29. Ponton, C. B., and Rawlings, R. D., Mater. Sci. Tech., 5, 865 (1989).Google Scholar
30. Lankford, J. and Sines, G., J. Biomed Mater. Res., 29, (1995) in press.Google Scholar
31. Ritchie, R. O. and Dauskardt, R. H., J. Ceram. Soc. Japan, 99, 1047 (1991).Google Scholar
32. Dauskardt, R. H., James, M. R., Porter, J. R., and Ritchie, R. O., J Am. Ceram. Soc., 75, 759 (1992).Google Scholar
33. Gilbert, C. J., Dauskardt, R. H., and Ritchie, R. O., J. Am. Ceram. Soc., 77 (1995).Google Scholar
34. Beavan, L. A., James, D. W., and Kepner, J. L., in Bioceramics. Volume 6 (Proc. 6th Intl. Symp. Ceramics in Medicine), eds. Ducheyne, P. and Christiansen, D. (Butterworths-Heinemann, 1993) pp. 205–10.Google Scholar
35. Ritchie, R. O., Intl. Metals Rev., 20, 205 (1979).Google Scholar
36. Minnear, W. P., Hollenbeck, T. M., Bradt, R. C., and Walker, P. L., J. Non-Cryst. Solids, 21, 107 (1976).Google Scholar
37. Soltesz, U. and Ritter, H., in Metals and Ceramics Biomaterials. Volume 2, Strength and Surface, eds. Ducheyne, P. and Hastings, G. W. (CRC Press, Boca Raton, 1984) pp. 2361.Google Scholar
38. Hodkinson, P. H. and Nadeau, J. S., J. Mater. Sci., 10, 846 (1975).Google Scholar
39. Ely, J. L. and Haubold, A. D., in Bioceramics. Volume 6 (Proc. 6th Intl. Symp. Ceramics in Medicine), eds. Ducheyne, P. and Christiansen, D. (Butterworths-Heinemann, 1993) pp. 199204.Google Scholar
40. Suresh, S. and Ritchie, R. O., Intl.. Metals Rev., 29, 445 (1984).Google Scholar
41. Ritchie, R. O. and Lankford, J. (eds.), Small Fatigue Cracks. 665 pp. (The Metallurgical Society of AIME, Warrendale, PA, 1986).Google Scholar
42. Miller, K. J. and de los Rios, E. R. (eds.), The Behaviour of Short Fatigue Cracks. 560 pp. (Institut Mechanical Engineers, London, UK, 1986).Google Scholar
43. Steffen, A. A., Dauskardt, R. H., and Ritchie, R. O., J. Am. Ceram. Soc., 74, 1259 (1991).Google Scholar
44. Raju, I. S., Atluri, S. N., and Newman, J. C. Jr, in Fracture Mechanics: Perspectives and Directions (Twentieth Symp.), ASTM STP 1020. eds., Wei, R. P. and Gangloff, R. P. (Am. Soc. Test. Matl., Philadelphia, PA, 1989) pp. 297316.Google Scholar
45. Ritchie, R. O., Mater. Sci. Eng., 103A, 15 (1988).Google Scholar
46. Evans, A. G., J Am. Ceram. Soc., 73, 187 (1990).Google Scholar
47. Haubold, A. D., Med. Prog. thr. Tech., 20, 201 (1994).Google Scholar
48. Sines, G. and Ma, L., in Bioceramics. Volume 6 (Proc. 6th Intl. Symp. Ceramics in Medicine), eds. Ducheyne, P. and Christiansen, D. (Butterworths-Heinemann, 1993) pp. 211–15.Google Scholar
49. Ma, L. and Sines, G., Materials Letters, 17, 49 (1993).Google Scholar
50. Snyder, S. R., Foecke, T., White, H. S., and Gerberich, W. W., J. Mater. Res., 7, 341 (1992).Google Scholar
51. Snyder, S. R., Gerberich, W. W., and White, H. S., Phys. Rev. B, 47, 10 823 (1993).Google Scholar
52. Venkataraman, S., Ph.D. Thesis, University of Minnesota, Minneapolis (1994).Google Scholar
53. Lilleodden, E. T., Bonin, W., Nelson, J., Wyrobek, J. T., and Gerberich, W. W., J. Mater. Res., 10, (1992) in press.Google Scholar
54. Macosko, C., Rheology, 527 (1995).Google Scholar