Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-30T07:55:01.352Z Has data issue: false hasContentIssue false

Fractal Growth of Clusters and Pores During Annealing of Aluminum Thin Films Deposited on Silica.

Published online by Cambridge University Press:  10 February 2011

Vincent Fleury
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Palaiseau, France.
Lazlo Balazs
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Palaiseau, France.
Franck Duclos
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Palaiseau, France.
Get access

Abstract

Annealing of an Al thin-film on SiO2 at temperatures in the range 400-660°C leads to a chemical reaction (oxidation of Al and reduction of Si) whih proceeds via irreversible growth of 2-D aggregates which belong to a class of clusters first described in MBE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Notes

1 Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
2 Bartelt, M. C. and Evans, J. W., Phys. Rev. B 46,12675 (1992).Google Scholar
3 Tang, L. H., J. Phys. (Paris) 123, 935 (1993).Google Scholar
4 Bales, G. S. and Chrzan, D. C., Phys. Rev. B 50, 6057 (1994)Google Scholar
5 Amar, J. G., Family, F. and Lam, P. M., Phys. Rev. B 50, 8781 (1994).Google Scholar
6 Amar, J. G. and Family, F., Mat. Res. Soc. Symp. Proc. Vol.367, 149, (1995).Google Scholar
7 Jensen, P., Barabasi, A.-L., Larralde, H., Havlin, S. and Stanley, H. E., Phys. Rev B 50, 15 316 (1994).Google Scholar
8 Bardotti, L., Jensen, P., Hoareau, A., Treilleux, A. and Cabaud, B., Phys. Rev. Lett. 74, 4694 (1995) In this experiment, the diffusion specie is composed of atom clusters.Google Scholar
9 Hwang, R. Q., Schroder, J., Gunther, C. and Behm, R. J., Phys. Rev. Lett. 67, 3279 (1991).Google Scholar
10 Michely, T., Hohage, M., Bott, M. and Comsa, G., Phys. Rev. Lett. 70, 3943 (1993).Google Scholar
11 Chambliss, D. D. and Wilson, R. J., J. Vac. Sci. Technol. B 9, 928 (1991).Google Scholar
12 Radnoczi, G., Vicsek, T., Sander, L. M. and Grier, D., Phys. Rev. A 35 R4012 (1987). In this experiment, the diffusing specie is not clearly identified, it is conjectured that Se is expelled from the crystal and diffuses away.Google Scholar
13 Zhang, J., Liu, D. and Colbow, K., Phys. Rev. B 48, 9130 (1993).Google Scholar
14 Elam, W. T., Wolf, S. A., Sprague, J., Gubser, D. U., Van Vechten, D. and Barz, G. L. and Meakin, P., Phys. Rev. Lett. 54, 701 (1985).Google Scholar
15 Chabala, J. M., Phys. Rev. B. 46, 11346 (1992). In this experiment, the diffusing species is Oxygen.Google Scholar
16 The ceramic used was Acticeram, purchased from Préciver (Maisons-Alfort, France). Acticeram is a slowly crystallized glass which can sustand a temperature of 850°C without significant deformation.Google Scholar
17 Standage, A. E. and Gani, M. S., J. Am. Ceram. Soc. 50, 101 (1967).Google Scholar
18 Silverman, R., J. Electrochem. Soc. 115, 674 (1968).Google Scholar
19 Chou, N. J. and Eldridge, J. M., J. Electrochem Soc. 117, 1287 (1970).Google Scholar
20 Prabriputaloong, K. and Piggott, M. R., J. Am. Ceram. Soc. 56, 184 (1973).Google Scholar
21 Prabriputaloong, K. and Piggott, M. R., J. Am. Ceram. Soc. 56, 177 (1973).Google Scholar
22 Prabriputaloong, K. and Piggott, M. R., J. Electrochem. Soc. (Solid State Science and Technology) 121,430 1974).Google Scholar
23 Vigouroux, Ann. Chim. Phys. 12–153-1897.Google Scholar
24 Adda, I. and Phillibert, P., La Diffusion dans les Solides, Presses Universitaires de France, Paris (1966).Google Scholar
25 Fujikawa, S.-I., Hirano, K.-I. and Fukushima, Y., Meta. Trans.A, 9A 1811, (1978).Google Scholar