Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-21T10:12:32.482Z Has data issue: false hasContentIssue false

Formation of Ultra-Thin Pore Seal Layer on Porous Low-k Films

Published online by Cambridge University Press:  01 June 2015

Shoko S. Ono
Affiliation:
R&D Center, Mitsui Chemicals, Inc., 580-32, Nagaura, Sodegaura, 299-0265, Chiba, Japan
Yasuhisa Kayaba
Affiliation:
R&D Center, Mitsui Chemicals, Inc., 580-32, Nagaura, Sodegaura, 299-0265, Chiba, Japan
Hirofumi Tanaka
Affiliation:
R&D Center, Mitsui Chemicals, Inc., 580-32, Nagaura, Sodegaura, 299-0265, Chiba, Japan
Hiroko Wachi
Affiliation:
R&D Center, Mitsui Chemicals, Inc., 580-32, Nagaura, Sodegaura, 299-0265, Chiba, Japan
Koji Inoue
Affiliation:
R&D Center, Mitsui Chemicals, Inc., 580-32, Nagaura, Sodegaura, 299-0265, Chiba, Japan
Get access

Abstract

In order to integrate porous dielectric materials into the next generation of Cu/low-k interconnect, the porous material has to be sealed against metal barrier precursor. We have reported pore sealants which forms ultra-thin (< 3 nm-thick) layer on top of the surface of porous low-k film while the pore sealant does not diffuse into pores. In this study, it was investigated how pore seal layer is formed on the surface of porous material and how pore mouths are sealed by pore seal layer. It was found that 1) thickness of the pore seal layer is well-controlled in the range < 5 nm, by varying spin rate and concentration of solid, 2) minimal thicknesses of the pore seal layer needed to achieve an efficient sealing for porous low-k films whose pore radius is 1.5 nm was 2.6 nm. 3) Larger pores, whose pore radius is 4.2 nm, were sealed completely with an expansion of our technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baklanov, M. R., Adelmann, C., Zhao, L., De Gendt, S., ECS J. Solid State Sci. Technol. 4, 1, Y1-Y4 (2015).CrossRefGoogle Scholar
Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. and Yanovitskaya, Z. Sh., J. Appl. Phys., 8793 (2003).Google Scholar
Elshocht, S. V., Delabie, A., Dewilde, S., Meersschaut, J., Swerts, J., Tielens, H., Verdonck, P., Witters, T., and Vancoille, E., ECS, 1839 (2011).Google Scholar
Chung, H., Chang, M., Chu, S., Kumar, N., Goto, K., Maity, N., Sankaranarayanan, S., Okamura, H., Ohtsuka, N., Ogawa, S., IEEE 454, 456, (2003).Google Scholar
Kim, H., Detavenier, C., van der Straten, O., Rossnagel, S. M., Kellock, A. J., and Park, D.-G., J. Appl. Phys. 98, 014308 (2005).CrossRefGoogle Scholar
Caro, A. M., Maes, G., Borghs, G., and Whelan, C., Microelectron. Eng. 85 (10), 20472050 (2008).CrossRefGoogle Scholar
Gandhi, D. D., Lane, M., Zhou, Y., Singh, A. P., Nayak, S., Tisch, U., Eizenberg, M., and Ramanath, G., Nature 447 (7142), 299–U292 (2007).CrossRefGoogle Scholar
Ganesa, P. G., Singh, A. P., and Ramanath, G., Appl. Phys. Lett. 85 (4), 579581 (2004).CrossRefGoogle Scholar
Caro, A. M., Maes, G., Borghs, G., Armini, S., and Travaly, Y., Mat. Res. Soc. Symp. Proc. 1249-F02-01 (2010).Google Scholar
George, S. M., Yoon, B., and Dameron, A. A., Acc. Chem. Res. 42(4), 498508 (2009).CrossRefGoogle Scholar
Loscutoff, P. W., Zhou, H., Clendenning, S. B., and Bent, S. F., ACS Nano 4(1), 331341.CrossRefGoogle Scholar
Loscutoff, P. W., Clendenning, S. B., and Bent, S. F., Mat. Res. Soc. Symp. Proc. 1249-F02-03 (2010).Google Scholar
Iacopi, F., Zistl, C., Jehoul, C., Tokei, Zs., Lea, Q.T., Das, A., Sullivan, C., Prokopowicz, G., Gronbeck, D., Gallagher, M., Calvert, J., Maex, K., Microelectron. Eng. 64, 351, (2002).CrossRefGoogle Scholar
Hijioka, K., Inoue, N., Kume, I., Kawahara, J., Furutake, N., Shirai, H., Itoh, T., Ogura, T., Kazama, K., Yamamoto, Y., Kasama, Y., Katsuyama, H., Manabe, K., Yamamoto, H., Saito, S., Hase, T., and Hayashi, Y., IEDM10-756.Google Scholar
Kimura, Y., Kobayashi, A., Ishikawa, D., Nakano, A., Matsushita, K., Kobayashi, N., IITC/AMC, IEEE International 1(2012).Google Scholar
Bo, X., Chan, K., Cui, D., He, R., Raj, D., Hollar, E., Baluja, S., Rocha, J., Naik, M., Demos, A., IITC/AMC, IEEE International 335 (2014).Google Scholar
Armini, S., Prado, J. L., Krishtab, M., Swerts, J., Verdonck, P., Meersschaut, J., Conard, T., Blauw, M., Struyf, H., Baklanov, M. R., Microelectron. Eng., 120, 240 (2014).CrossRefGoogle Scholar
Sun, Y., Krishtab, M., Struyf, H., Verdonck, P., De Feyter, S., Baklanov, M. R., Armini, S. Langmuir, 30, 3832 (2014).CrossRefGoogle Scholar
Frot, T., Volksen, W., Purushothaman, S., Bruce, R., Dubois, G., Adv. Mater. 23, 2828 (2011).CrossRefGoogle Scholar
Frot, T., Volksen, W., Purushothaman, S., Bruce, R. L., Magbitang, T., Miller, D. C., Deline, V. R., Dubois, G., Adv Funct Mater. 22, 3043 (2012).CrossRefGoogle Scholar
Lionti, K., Volksen, W., Magbitang, T., Darnonand, M. Dubois, G., ECS J. Solid State Sci. Technol. 4, 1, N3071-N3083 (2015).CrossRefGoogle Scholar
Ono, S. S., Kohmura, K., Tanaka, H., Nakayama, K., Kagayama, A., Tsuchiya, T., Nakaura, M., Matsuoka, O., Takaki, T. and Maekawa, K., Mat. Res. Soc. Symp. Proc. 1249-F06-03 (2010).Google Scholar
Ono, S. S., Kohmura, K., Tanaka, H., Kayaba, Y., Kikkawa, T. Mat. Res. Soc. Symp. Proc. 1335, 21 (2011).CrossRefGoogle Scholar
Ono, S. S., Kayaba, Y., Suzuki, T., Tanaka, H., Kohmura, K., Mat. Res. Soc. Symp. Proc. 1428, (2012).Google Scholar
Ono, S. S., Kayaba, Y., Suzuki, T., Kohmura, K., Tanaka, H., Mat. Res. Soc. Symp. Proc. 1559 (2013).Google Scholar
Kayaba, Y., Tanaka, H., Suzuki, T., Kohmura, K., Ono, S.S., IITC/AMC, IEEE International 261(2014).Google Scholar
Baklanov, M. R., Mogilnikov, K. P., Yim, J.-H., Mat. Res. Soc. Symp. Proc. 812, F5.4.1, (2004).CrossRefGoogle Scholar