Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-25T00:54:25.719Z Has data issue: false hasContentIssue false

Fluorinated Monomolecular Assemblies: Model Systems to Probe Chemical Interactions at the Polymer-Metal Interface

Published online by Cambridge University Press:  21 February 2011

Lai-Kwan Chau
Affiliation:
Department of Chemistry and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011
Marc D. Porter
Affiliation:
Department of Chemistry and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011
Get access

Abstract

Monomolecular assemblies of n-perfluorocarboxylic acids [CF3(CF2)nCOOH, n=6, 7, and 8] have been adsorbed at silver by spontaneous adsorption from dilute alcoholic solutions. Infrared reflection spectroscopy indicates that the monolayers form by the reactive chemisorption of the carboxylic acid to a carboxylate salt. Ellipsometrically-determined film thicknesses increase linearly with an increase in the perfluorocarbon chain length. Contact angle measurements indicate that the packing density of the films increases with increasing chain length, resulting in an interface with a low surface free energy. The structure and properties of these interfaces are compared to those for monolayers of n-alkanoic acids. The potential utility of such assemblies to probe fundamental chemical and physical interactions at polymer-metal interfaces are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bigelow, W. C., Pickett, D. L., and Zisman, W. A., J. Colloid Interface Sci. 1, 513 (1946).Google Scholar
2. Polymeropoulos, E. E. and Sagiv, J., J. Chem. Phys. 69, 1836 (1978).Google Scholar
3. Allara, D. L. and Nuzzo, R. G., Langmuir, 1, 52 (1985).Google Scholar
4. Moses, P. R., Wier, L., and Murray, R. W., Anal. Chem. 47, 1882 (1975).Google Scholar
5. Gun, J., Iscovici, R., and Sagiv, J., J. Colloid Interface Sci. 101, 201 (1984).Google Scholar
6. Nuzzo, R. G. and Allara, D. L., J. Am. Chem. Soc. 105, 4481 (1983).Google Scholar
7. Porter, M. D., Bright, T. B., Allara, D. L., and Chidsey, C. E. D., J. Am. Chem. Soc. 109, 3559 (1987).Google Scholar
8. Finklea, H. O. and Melendez, J. A., Spectroscopy,. 1, 47 (1986).Google Scholar
9. Bain, C. D., Troughton, E. B., Tao, Y.-T., Evall, J., Whitesides, G. M., and Nuzzo, R. G., J. Am. Chem. Soc. 111, 321 (1989).Google Scholar
10. Schlotter, N. E., Porter, M. D., Bright, T. B., and Allara, D. L., Chem. Phys. Lett. 132, 93 (1986).Google Scholar
11. Swalen, J. D., Allara, D. L., Andrade, J. D., Chandross, E. A., Garoff, S., Israelachvili, J., McCarthy, T. J., Murray, R., Pease, R. F., Rabolt, J. F., Wynne, K. J., and Yu, H., Langmuir, 3, 932 (1987).Google Scholar
12. Moynihan, R. E., J. Am. Chem. Soc.. 81, 1045 (1959).Google Scholar
13. Zerbi, G. and Sacchi, M., Macromolecules, 6, 692 (1973).Google Scholar
14. Boerio, F. J. and Koenig, J. L., J. Chem. Phys. 52, 4826 (1970).Google Scholar
15. Greenler, R. G., J. Chem. Phys. 44, 310 (1966).Google Scholar
16. Canning, N. D. S. and Madix, R. J., J. Phys. Chem. 88, 2437 (1984).Google Scholar
17. Hare, E. F., Shafrin, E. G., and Zisman, W. A., J. Phys. Chem. 58, 236 (1954).Google Scholar
18. Chidsey, C. E. D. and Loiacano, D. N. (private communication).Google Scholar
19. Mitsuya, M. and Taniguchi, Y., J. Colloid Interface Sci. 107, 287 (1985).Google Scholar
20. Fox, H. W. and Zisman, W. A., J. Colloid Interface Sci. 5, 514 (1950).Google Scholar
21. Hudlicky, M., Orsanic Fluorine Chemistry, Plenum:New York, 1971, p. 64.Google Scholar
22. Shafrin, E. G. and Zisman, W. A., J. Phys. Chem. 66, 740 (1962).Google Scholar
23. Bain, C. D. and Whitesides, G. W., J. Am. Chem. Soc. 110, 5897 (1988).Google Scholar