Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T03:40:14.778Z Has data issue: false hasContentIssue false

First-principles study of ferromagnetic Ni2CoGa(Zn) alloys in the Heusler and the inverse Heusler structure

Published online by Cambridge University Press:  31 January 2011

Antje Dannenberg
Affiliation:
antje@thp.uni-duisburg.de, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Markus Ernst Gruner
Affiliation:
me@thp.uni-duisburg.de, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Manfred Wuttig
Affiliation:
wuttig@umd.edu, Department of Material Science and Engineering, University of Maryland, College Park, Maryland, United States
Peter Entel
Affiliation:
entel@thp.uni-duisburg.de, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Get access

Abstract

We performed an ab initio characterization of ferro- and nonmagnetic Ni2CoGa and Ni2CoZn compounds with respect to their potential application as new ferromagnetic shape memory alloys. The calculation of structural energy differences and mixing energies in the common X2YZ Heusler structure and the inverse (XY)XZ structure revealed, that both alloys are stable in the tetragonal distorted Heusler structure with a c/a ratio of 1.38 and show ferromagnetic ordering. The Curie temperatures are of the order of ≃ 250 K. Exchanging Ga with Zn improves the magnetic properties of the alloy without qualitative modification of the structural energy landscape, but at the expense of a reduced mixing energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kainuma, R., Gejima, F., Sutou, Y., Ohnuma, I. and Ishida, K., Mater. Trans. JIM 41, 943 (2000).Google Scholar
2 Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K., Appl. Phys. Lett. 85, 4358 (2004).Google Scholar
3 Maziarz, W., Dutkiewicz, J., Santamarta, R. and Cesari, E., Eur. Phys. J.-Special Topics 158, 137 (2008).Google Scholar
4 Tanaka, Y., Oikawa, K., Sutou, Y., Omori, T., Kainuma, R. and Ishida, K., Mater. Sci. Eng. A 438, 1054 (2006).Google Scholar
5 Brown, P. J., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K. U., Oikawa, K., Ouladdiaf, B. and Ziebeck, K. R. A., J. Phys.: Condens. Matter 17, 1301 (2005).Google Scholar
6 Chernenko, V. A., Pons, J., Cesari, E. and Zasimchuk, I. K., Scripta Materialia 50, 225 (2004).Google Scholar
7 Sato, M., Okazaki, T., Furuya, Y., Kishi, Y. and Wuttig, M., Mater. Trans. 45, 204 (2004).Google Scholar
8 Oikawa, K., Ots, T., Gejima, F., Ohmori, T., Kainuma, R. and Ishida, K., Mater. Trans. 42, 2472 (2001).Google Scholar
9 Oikawa, K., Wulff, L., Iijima, T., Gelima, F., Ohmori, T., Fujita, A., Fukamichi, K., Kainuma, R. and Ishida, K., Appl. Phys. Lett. 79, 3290 (2001).Google Scholar
10 Wuttig, M., Li, J. and Cracuinescu, C., Scripta Materialia 44, 2393 (2002).Google Scholar
11 Cracuinescu, C., Kishi, Y., Lograsso, A. T. and Wuttig, M., Scripta Materialia 47, 285 (2002).Google Scholar
12 Oikawa, K., Ota, T., Tanaka, Y., Omori, T., Kainuma, R. and Ishida, K., Trans. Mater. Res. Soc. Jpn. 28, 265 (2003).Google Scholar
13 Koeda, N., Sutou, Y., Omori, T., Oikawa, K., Kainuma, R. and Ishida, K., Scripta Materialia 52, 1153 (2005).Google Scholar
14 Oikawa, K., Koeda, N., Sutou, Y., Omori, T., Kainuma, R. and Ishida, K., Mater. Trans. 45, 2780 (2004).Google Scholar
15 Dannenberg, A., Gruner, M. E., Wuttig, M. and Entel, P., EDP Science, Proc. ESOMAT 2009, 04004 (2009).Google Scholar
16 Entel, P., Gruner, M. E., Dannenberg, A., Siewert, M., Nayak, S. K., Herper, H. C. and Buchelnikov, V.V., Materials Science Forum 635, 312 (2010).Google Scholar
17 Planes, A., Manosa, Ll., and Acet, M., J. Phys.: Condens. Mater. 21, 233201 (2009)Google Scholar
18 Jaggi, N. K., Rao, K. R. P. M., Grover, A. K., Gupta, L. C., Vijayaraghavan, R. and Khoi, L. D., Hyper ne Interactions fi 4, 402 (1978).Google Scholar
19 Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
20 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
21 Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
22 Ebert, H., in Lecture Notes in Physics, edited by Dreysse, H. (Springer, Berlin, 2000) 50, p. 191.Google Scholar
24 Entel, P., Buchelnikov, V.V., Khovailo, V. V., Zayak, A. T., Adeagbo, W. A., Gruner, M. E., Herper, H. C., Wassermann, E. F., J. Phys. D: Appl. Phys. 39, 865 Google Scholar