Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-nshs2 Total loading time: 0.276 Render date: 2022-01-24T22:47:06.082Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

First-principles study of ferromagnetic Ni2CoGa(Zn) alloys in the Heusler and the inverse Heusler structure

Published online by Cambridge University Press:  31 January 2011

Antje Dannenberg
Affiliation:
antje@thp.uni-duisburg.de, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Markus Ernst Gruner
Affiliation:
me@thp.uni-duisburg.de, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Manfred Wuttig
Affiliation:
wuttig@umd.edu, Department of Material Science and Engineering, University of Maryland, College Park, Maryland, United States
Peter Entel
Affiliation:
entel@thp.uni-duisburg.de, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Get access

Abstract

We performed an ab initio characterization of ferro- and nonmagnetic Ni2CoGa and Ni2CoZn compounds with respect to their potential application as new ferromagnetic shape memory alloys. The calculation of structural energy differences and mixing energies in the common X2YZ Heusler structure and the inverse (XY)XZ structure revealed, that both alloys are stable in the tetragonal distorted Heusler structure with a c/a ratio of 1.38 and show ferromagnetic ordering. The Curie temperatures are of the order of ≃ 250 K. Exchanging Ga with Zn improves the magnetic properties of the alloy without qualitative modification of the structural energy landscape, but at the expense of a reduced mixing energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kainuma, R., Gejima, F., Sutou, Y., Ohnuma, I. and Ishida, K., Mater. Trans. JIM 41, 943 (2000).CrossRefGoogle Scholar
2 Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K., Appl. Phys. Lett. 85, 4358 (2004).CrossRefGoogle Scholar
3 Maziarz, W., Dutkiewicz, J., Santamarta, R. and Cesari, E., Eur. Phys. J.-Special Topics 158, 137 (2008).CrossRefGoogle Scholar
4 Tanaka, Y., Oikawa, K., Sutou, Y., Omori, T., Kainuma, R. and Ishida, K., Mater. Sci. Eng. A 438, 1054 (2006).CrossRefGoogle Scholar
5 Brown, P. J., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K. U., Oikawa, K., Ouladdiaf, B. and Ziebeck, K. R. A., J. Phys.: Condens. Matter 17, 1301 (2005).Google Scholar
6 Chernenko, V. A., Pons, J., Cesari, E. and Zasimchuk, I. K., Scripta Materialia 50, 225 (2004).CrossRefGoogle Scholar
7 Sato, M., Okazaki, T., Furuya, Y., Kishi, Y. and Wuttig, M., Mater. Trans. 45, 204 (2004).CrossRefGoogle Scholar
8 Oikawa, K., Ots, T., Gejima, F., Ohmori, T., Kainuma, R. and Ishida, K., Mater. Trans. 42, 2472 (2001).CrossRefGoogle Scholar
9 Oikawa, K., Wulff, L., Iijima, T., Gelima, F., Ohmori, T., Fujita, A., Fukamichi, K., Kainuma, R. and Ishida, K., Appl. Phys. Lett. 79, 3290 (2001).CrossRefGoogle Scholar
10 Wuttig, M., Li, J. and Cracuinescu, C., Scripta Materialia 44, 2393 (2002).CrossRefGoogle Scholar
11 Cracuinescu, C., Kishi, Y., Lograsso, A. T. and Wuttig, M., Scripta Materialia 47, 285 (2002).CrossRefGoogle Scholar
12 Oikawa, K., Ota, T., Tanaka, Y., Omori, T., Kainuma, R. and Ishida, K., Trans. Mater. Res. Soc. Jpn. 28, 265 (2003).Google Scholar
13 Koeda, N., Sutou, Y., Omori, T., Oikawa, K., Kainuma, R. and Ishida, K., Scripta Materialia 52, 1153 (2005).CrossRefGoogle Scholar
14 Oikawa, K., Koeda, N., Sutou, Y., Omori, T., Kainuma, R. and Ishida, K., Mater. Trans. 45, 2780 (2004).CrossRefGoogle Scholar
15 Dannenberg, A., Gruner, M. E., Wuttig, M. and Entel, P., EDP Science, Proc. ESOMAT 2009, 04004 (2009).Google Scholar
16 Entel, P., Gruner, M. E., Dannenberg, A., Siewert, M., Nayak, S. K., Herper, H. C. and Buchelnikov, V.V., Materials Science Forum 635, 312 (2010).CrossRefGoogle Scholar
17 Planes, A., Manosa, Ll., and Acet, M., J. Phys.: Condens. Mater. 21, 233201 (2009)Google Scholar
18 Jaggi, N. K., Rao, K. R. P. M., Grover, A. K., Gupta, L. C., Vijayaraghavan, R. and Khoi, L. D., Hyper ne Interactions fi 4, 402 (1978).CrossRefGoogle Scholar
19 Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
20 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
21 Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
22 Ebert, H., in Lecture Notes in Physics, edited by Dreysse, H. (Springer, Berlin, 2000) 50, p. 191.Google Scholar
24 Entel, P., Buchelnikov, V.V., Khovailo, V. V., Zayak, A. T., Adeagbo, W. A., Gruner, M. E., Herper, H. C., Wassermann, E. F., J. Phys. D: Appl. Phys. 39, 865 CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First-principles study of ferromagnetic Ni2CoGa(Zn) alloys in the Heusler and the inverse Heusler structure
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

First-principles study of ferromagnetic Ni2CoGa(Zn) alloys in the Heusler and the inverse Heusler structure
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

First-principles study of ferromagnetic Ni2CoGa(Zn) alloys in the Heusler and the inverse Heusler structure
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *