Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-bv7lh Total loading time: 0.407 Render date: 2021-06-13T01:01:17.106Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

First Principles Simulations of Phase Stability in Stoichiometric and Doped LiMnO2

Published online by Cambridge University Press:  21 March 2011

Alexander I. Landa
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Chun-Chieh Chang
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Prashant N. Kumta
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Blanka Magyari-Köpe
Affiliation:
Theoretical Physics, Royal Institute of Technology, SE-10044, Stockholm, Sweden
Levente Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044, Stockholm, Sweden
Rajeev Ahuja
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE- 75121, Uppsala, Sweden
Igor A. Abrikosov
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE- 75121, Uppsala, Sweden
Get access

Abstract

The full charge density exact muffin-tin orbitals method has been used to study the stability of lithium-manganese oxides exhibiting different crystallographic allotropes. Calculations have been performed for ferromagnetic and antiferromagnetic phases of LiMnO2 as well as for the phase with local moment disorder. For the ordered LiMnO2 compound we reproduced the correct ground state, the antiferromagnetic orthorhombic structure. The effect of doping LiMnO2 by Co was considered with the aim to predict the stabilization of the layered structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hoppe, R., Brachtel, G. and Jansen, M., Z. Anorg. Chem., 417, 1 (1975).CrossRefGoogle Scholar
2. Armstrong, A. R. and Bruce, P. G., Nature, 381, 499 (1996).CrossRefGoogle Scholar
3. Vitins, G. and West, K., J. Electrochem. Soc., 144, 2587 (1997).CrossRefGoogle Scholar
4. Bruce, P. G., Armstrong, A. R. and Gitzendanner, R. L., J. Mater. Chem., 9, 193 (1999).Google Scholar
5. Armstrong, A. R., Robertson, A. D. and Bruce, P. G., Electrochimica Acta, 45, 285 (1999).CrossRefGoogle Scholar
6. Davidson, I. J., McMillan, R. S., Slerg, H., Luan, B., Kargina, I., Murray, J. J., and Swainson, I. P., J. Power Sources, 81–82, 406 (1999).CrossRefGoogle Scholar
7. Chiang, Y.-M., Sadoway, D. R., Jang, Y.-I., Huang, B., and Wang, H., Electrochem. Solid- State Lett., 2, 107 (1999).CrossRefGoogle Scholar
8. Mishra, S. K. and Ceder, G., Phys Rev. B, 59, 6120 (1999).CrossRefGoogle Scholar
9. Ceder, G. and Mishra, S. K., Electrochem. Solid-State Lett., 2, 550 (1999).CrossRefGoogle Scholar
10. Buta, S, Morgan, D., Ven, A. Van der, Aydinol, M. K., and Ceder, G., J. Electrochem. Soc., 146, 4335 (1999).CrossRefGoogle Scholar
11. Greedan, J. E., Raju, N. P. and Davidson, I. J., J. Solid State Chem., 128, 209 (1997).CrossRefGoogle Scholar
12. Tabuchi, M., Ado, K., Kobayashi, H., Kageyama, H., Marquelier, C., Kondo, A., and Kanno, R., J. Electrochem. Soc., 145, L49 (1998).CrossRefGoogle Scholar
13. Andersen, O. K., Jepsen, O. and Krier, G., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O. K., and Mookerjee, A. (World Scientific, Singapore, 1994), p. 63.Google Scholar
14. Andersen, O. K., Arcangeli, C., Tank, R. W., Saha-Dasgupta, T., Krier, G., Jepsen, O., and Dasgupta, I., in Tight-Binding Approach to Computational Materials Science, edited by Turchi, P. E. A.. Gonis, A. and Colombo, L. (Mater. Res. Soc. Proc. 491, Pittsburgh, PA, 1998) pp. 334.Google Scholar
15. Vitos, L., Skriver, H. L., Johansson, B., and Kollár, J., Comput. Mater. Sci., 18, 24 (2000).CrossRefGoogle Scholar
16. Perdew, J. and Wang, Y., Phys. Rev. B, 45, 13244 (1992).CrossRefGoogle Scholar
17. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett., 45, 566 (1980).CrossRefGoogle Scholar
18. Vitos, L., Kollár, J. and Skriver, H. L., Phys. Rev. B, 55, 13521 (1997).CrossRefGoogle Scholar
19. Kollár, J., Vitos, L. and Skriver, H. L., in Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, edited by Dreyssé, H. (Springer-Verlag, Berlin, 2000), p. 85. CrossRefGoogle Scholar
20. Vitos, L., Phys. Rev. B, 64, 033125 (2001).CrossRefGoogle Scholar
21. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996).CrossRefGoogle Scholar
22. Vitos, L., Johansson, B., Kollár, J., and Skriver, H. L., Phys. Rev. B, 62, 10046 (2000).CrossRefGoogle Scholar
23. Vitos, L., Abrikosov, I. A. and Johansson, B. (submitted to Phys. Rev. Lett).Google Scholar
24. Moruzzi, V. L., Janak, J. F. and Schwartz, K., Phys. Rev. B, 37, 790 (1988).CrossRefGoogle Scholar
25. Singh, D. J., Phys. Rev. B, 55, 309 (1997).CrossRefGoogle Scholar
26. Akai, H. and Dederichs, P. H., Phys. Rev. B, 47, 8739 (1993).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First Principles Simulations of Phase Stability in Stoichiometric and Doped LiMnO2
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

First Principles Simulations of Phase Stability in Stoichiometric and Doped LiMnO2
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

First Principles Simulations of Phase Stability in Stoichiometric and Doped LiMnO2
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *