Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-11T17:57:55.218Z Has data issue: false hasContentIssue false

Ferromagnetic properties and Nanocrystallization behavior of Amorphous (Fe0.99Mo0.01)78Si9B13 Ribbons

Published online by Cambridge University Press:  21 March 2011

Xiang-Cheng Sun
Affiliation:
Prog. Molecular Simulation, Instituto Mexicano del Petroleo, Lazaro Cardenas 152#, 07730, D.F. Mexico E-mail: sun@imp.mx; Fax: +525-3336239
J. A. Toledo
Affiliation:
Prog. Molecular Simulation, Instituto Mexicano del Petroleo, Lazaro Cardenas 152#, 07730, D.F. MexicoFax: +525-3336239
S. Galindo
Affiliation:
ININ, Km.36.5, Carr. Mexico-Toluca, C.P.52045, Edo. de Mexico, Mexico
W. S. Sun
Affiliation:
Institute of Metal Research, CAS, Shenyang, 110015, P. R. China
Get access

Abstract

Ferromagnetic properties and nanocrystallization process of soft ferromagnetic (Fe0.99Mo0.01)78Si9B13 ribbons are studied by transmission electron microscope (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), differential scanning calorimeters (DSC) and magnetization measurements. The Curie and crystallization temperature are determined to be TC=665K and Tx = 750K, respectively. The Tx value is in well agreement with DSC measurement results. X-ray diffraction patterns had shown a good reconfirm of two metastable phases (Fe23B6, Fe3B) were formed under in-situ nanocrystallization process. Of which these metastable phases embedded in the amorphous matrix have a significant effect on magnetic ordering. The ultimate nanocrystalline phases of α-Fe (Mo, Si) and Fe2B at optimum annealing temperature had been observed respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of nanocrystalline ferromagnetism, suggesting the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1. Rawers, J. C., McCune, R. A. and Adams, A., J. Mater. Sci. Lett. 7, 958 (1988)10.1007/BF00720741Google Scholar
2. A, Hernado, Marin, P., Vazquez, M., Barandiaran, J. M., and Herzer, G., Phys. Rev. B58, 366 (1998).Google Scholar
3. Liu, X. D., Wang, J. T. and Ding, B. Z., J. Mater. Sci. Lett. 12, 1108 (1993)Google Scholar
4. Yoshizawa, Y., Oguma, S. and Yamauchi, K., J. Appl. Phys. 64(10), 6044 (1988)Google Scholar
5. Bario, M., Antonione, C., Allia, P., Tiberto, P. and Vinai, F., Mater. Sci. Eng. A179, 572 (1994).10.1016/0921-5093(94)90269-0Google Scholar
6. Liu, X. D., Lu, K., and Hu, Z. Q., Mater. Sci. Eng. A179/180, 386 (1994)Google Scholar
7. Tong, H. Y., Wang, J. T., Jiang, H. G. and Lu, K., J. Non-Cryst. Solids 150, 444 (1992)Google Scholar
8. Sterns, M. B. Phys. Rev. 129, 1136 (1963)Google Scholar
9. Kim, C. S., Kim, S. B., Lee, J. S. and Noh, T. H., J. Appl. Phys. 79(8) 5459 (1996)Google Scholar
10. Tebble, R. S. and Craik, D. J., Magnetic Materials (Wiley-Interscience, NewYork, 1969), P. 51 Google Scholar