Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-18T04:09:59.131Z Has data issue: false hasContentIssue false

Ferroelasticity, Pseudoelasticity, and Shape Memory Effect in an Ionic Material Pb3(PO4)2

Published online by Cambridge University Press:  25 February 2011

Y. Yamada*
Affiliation:
Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Get access

Abstract

A theory of pseudoelasticity is developed within the framework of the phenomenological Ginzburg-Landau Scheme. The system with ℈stripe℉-type ferroelastic domain structure has been discussed using Transfer-Integral method, which directly gives the equillibrium density of domain boundaries and the response of domain pattern against the external stress. The results are applied to the case of Pb3(PO4)2, an ionic ferroelastic material which shows pseudoelasticity and shape memory effect. It is suggested that in this particular case, random stress field is mainly responsible for pseudoelastic behavior. The observed stressstrain curve has been analyzed quantitatively from this standpoint. The origin of the two-way shape memory effect has also been inferred qualitatively from the same stand point.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Otuska, K. and Shimizu, K., International Metals Reviews 31, 93 (1986)Google Scholar
2) Falk, F., Acta Metal. 28, 1773 (1980)CrossRefGoogle Scholar
3) Nittono, O. and Koyama, Y., J. Appl. Phys. 21, 680 (1982)Google Scholar
4) Falk, F. and Konopka, P., J. Phys. Condens. Matter 2, 61 (1990)Google Scholar
5) Tsunekawa, S., Suezawa, M. and Takei, H., phys. stat. solid. a40, 437 (1977)CrossRefGoogle Scholar
6) Tsunekawa, S. and Takei, H., phys. stat. solid. a50, 695 (1978)Google Scholar
7) Yamada, Y. and Uesu, Y., to be published in Solid State Commun.Google Scholar
8) Kiat, J.M., Calvarin, G. and Yamada, Y., submitted to Phys. Rev.Google Scholar
9) Salamon, M.B., Meichle, M.E., Wayman, C.M., Phys. Rev. B31, 7306 (1985)Google Scholar
10) Yamda, Y., Metal. Trans. 19A, 777 (1988)Google Scholar
11) Fuchizaki, K. and Yamada, Y., Phys. Rev. B40, 4740 (1989)Google Scholar
12) Shapiro, S.M., Noda, Y., Fujii, Y. and Yamada, Y., Phys. Rev. B30, 4314 (1984)Google Scholar
13) Noda, Y., Takimoto, M., Nakagawa, T. and Yamada, Y., Metal. Trans. 19A, 265 (1988)Google Scholar
14) Torres, J., phys. stat. solid. (b)71 141 (1975)CrossRefGoogle Scholar
15) Joffrin, C., Benoit, J.P., Peschamps, L. and Lambert, M., J. Physique 3, 205 (1979)Google Scholar
16) Keppler, U., Z fur Krist. 132, 228 (1970)Google Scholar
17) Brixner, L.H., Bierstedt, P.E., Jaep, W.F. and Barkley, J.R., Mat. Res. Bull. 8, 5128 (1973)Google Scholar
18) Bismayer, U. and Salje, E., Acta Cryst. A37, 1029 (1981)Google Scholar
19) Chapelle, J.P., Cao Xuan An and Benoit, J.P., Solid State Commun. 19, 573 (1976)CrossRefGoogle Scholar
20) Joffrin, C., Benoit, J.B., Currat, R. and Lambert, M., J. Physique 40, 1185 (1979)Google Scholar
21) Scalapino, D.J., Sears, M. and Ferrelll, R.A., Phys. Rev. B6, 3409 (1972)Google Scholar
22) Scalapino, D.J., Imary, Y. and Pincus, P., Phys. Rev. B11, 2042 (1975)Google Scholar
23) Krumhansl, J.A. and Schrieffer, J.R., Phys. Rev. B11, 3535 (1975)CrossRefGoogle Scholar