Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-ph4cd Total loading time: 0.474 Render date: 2022-07-05T02:00:04.314Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Fast Room Temperature Detection of State of Circular Polarization of Terahertz Radiation

Published online by Cambridge University Press:  21 March 2011

Sergey D. Ganichev
Affiliation:
Institut für Experim. und Angew. Physik, Universität Regensburg, 93040 Regensburg, Germany A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
Hermann Ketterl
Affiliation:
Institut für Experim. und Angew. Physik, Universität Regensburg, 93040 Regensburg, Germany
Wilhelm Prettl
Affiliation:
Institut für Experim. und Angew. Physik, Universität Regensburg, 93040 Regensburg, Germany
Get access

Abstract

We report on a room temperature detector which allows to determine and monitor the state of polarization of terahertz radiation with picosecond temporal resolution. The detector is based on the circular photogalvanic effect recently observed in GaAs/AlGaAs quantum wells. The circular photogalvanic effect yields in response to elliptically polarized radiation a current signal proportional to the degree of circular polarization. The peak current signal occurs in unbiased samples for circular polarization, vanishes at linear polarization and changes sign by switching the helicity from right-handed to left-handed. The detector consists of a (113)A MBE grown p-GaAs/AlGaAs multiple quantum well structure. The response has been measured in the wavelength range between 76 μm and 280 μm at normal incidence of the radiation on the sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hadni, A., Infrared and Millimeter Waves, vol.3, eds. Button, K.J. and Wiltse, J.C., p. 112 (Academic Press, 1980).Google Scholar
2. Valov, P.M., Goncharenko, K.V., Markov, Yu.V., Pershin, V.V., Ryvkin, S.M., and Yaroshetskii, I.D., Sov. J. Quantum Electronics 7, 50 (1977).CrossRefGoogle Scholar
3. Gibson, A.F., and Kimmitt, M.F., Infrared and Millimeter Waves, vol.3, eds. Button, K.J. and Wiltse, J.C., p. 182 (Academic Press, 1980).Google Scholar
4. Ganichev, S.D., Terent'ev, Ya.V., and Yaroshetskii, I.D., Sov. Tech. Phys. Lett. 11, 20 (1985).Google Scholar
5. Kimmitt, M.F., Infrared Physics 32, 213 (1992).CrossRefGoogle Scholar
6. Ganichev, S.D., Emel'yanov, S.A., Pakhomov, A.G., Terent'ev, Ya.V., and Yaroshetskii, I.D., Sov. Tech. Phys. Lett. 11, 377 (1985).Google Scholar
7. Schneider, H., Schönbein, C., Bihlmann, G., van Son, P., and Sigg, H., Appl. Phys. Lett. 70, 1602 (1997).CrossRefGoogle Scholar
8. Sigg, H., Kwakernaak, M.H., Margotte, B., Erni, D., van Son, P., and Köhler, K., Appl. Phys. Lett. 67, 2827 (1995).CrossRefGoogle Scholar
9. Stone, R.J., Michels, J.G., Wong, S.L., Foxton, C.T., Nicholas, R.J., and Fox, A.M., Appl. Phys. Lett. 69, 3569 (1996).CrossRefGoogle Scholar
10. Winnerl, S., Seifert, W., Schomburg, E., Grenzer, J., and Renk, K.F., Langerak, C.J.G.M., van der Meer, A.F.G., Pavel'ev, D.G., Koschurinov, Yu., Ignatov, A.A., Melzer, B., Ustinov, V., Ivanov, S., and Kop'ev, P.S., Appl. Phys. Lett. 73, 2983 (1998).CrossRefGoogle Scholar
11. Ganichev, S.D., Ketterl, H., Prettl, W., Ivchenko, E.L., and Vorobjev, L.E., Appl. Phys. Lett. 77, 3146 (2000).CrossRefGoogle Scholar
12. Ganichev, S.D., Ivchenko, E.L., Danilov, S.N., Eroms, J., Wegscheider, W., Weiss, D., and Prettl, W., Phys. Rev. Lett. 86, 4358 (2001).CrossRefGoogle Scholar
13. Ivchenko, E.L. and Pikus, G.E., Superlattices and Other Heterostructures. Symmetry and Optical Phenomena, Springer Series in Solid State Sciences, vol.110, Springer-Verlag, 1995; second edition 1997; Ch. 10.Google Scholar
14. Ganichev, S.D., Ivchenko, E. L., and Prettl, W., Physica E, (in press).Google Scholar
15. Ganichev, S.D., Physica B 273–274, 737 (1999).CrossRefGoogle Scholar
16. Andrianov, A.V., Beregulin, E.V., Ganichev, S.D., Glukh, K.Yu. and Yaroshetskii, I.D., Sov. Tech. Phys. Lett. 14, 580 (1988).CrossRefGoogle Scholar
17. Ganichev, S.D., Kalz, F.-P., Rössler, U., Prettl, W., Ivchenko, E.L., Bel'kov, V.V., Neumann, R., Brunner, K., and Abstreiter, G., Proc. of MRS Fall Meeting, Boston (2001) (in press).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fast Room Temperature Detection of State of Circular Polarization of Terahertz Radiation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fast Room Temperature Detection of State of Circular Polarization of Terahertz Radiation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fast Room Temperature Detection of State of Circular Polarization of Terahertz Radiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *