Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.373 Render date: 2021-11-29T09:37:10.433Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fast and Controlled Integration of Carbon Nanotubes into Microstructures

Published online by Cambridge University Press:  01 February 2011

Wenjun Xu
Affiliation:
wxu3@mail.gatech.edu, Georgia Institute of Technology, Polymer, Textile and Fiber Engineering, Atlanta, Georgia, United States
Chang-Hyeon Ji
Affiliation:
cji6@mail.gatech.edu, Georgia Institute of Technology, Electrical Engineering, Atlanta, Georgia, United States
Richard Shafer
Affiliation:
richard.shafer@mse.gatech.edu, Georgia Institute of Technology, Electrical Engineering, Atlanta, Georgia, United States
Mark Allen
Affiliation:
Mark.allen@ece.gatech.edu, Georgia Institute of Technology, Electrical Engineering, Atlanta, Georgia, United States
Get access

Abstract

In this paper, we report the results of a rapid and room temperature integration approach for the selective and structured deposition of carbon nanotubes (CNTs) into three-dimensional microstructures. The approach exploits electrophoretic deposition (EPD) from an aqueous suspension of CNTs, together with suitably patterned and electrically-energized microstructure-bearing substrates. Uniform 2-D and 3-D micropatterns of CNTs on wafer scale have been achieved in less than 4 minutes with controllable thicknesses ranging from 133nm to several micrometers. Orientation of the deposited CNTs was observed in microstructures with certain dimensions. Surface hydrophobicity of the microstructures was found to be critical in achieving well-defined micropatterning of CNTs. A hydrophobic microstructure surface leads to the selective patterning profiles of CNTs, while a hydrophilic surface induces CNTs assembly over the entire microstructure, with resultant loss of selectivity. This approach can be further extended to fabricate 3-D micropatterns with multilayer materials on flexible substrate through the aid of transfer micromolding techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jensen, K., Kim, K., and Zettl, A., Nature Nanotechnology 3, 533(2008).CrossRefGoogle Scholar
2 Kawano, T., Chiamori, H. C., Suter, M., Zhou, Q., Sosnowchik, B.D., and Lin, L., Nano Lett. 7, 3686 (2007).CrossRefGoogle Scholar
3 Berson, S., de Bettignies, R., Bailly, S., Guillerez, S., and Jousselme, B., Adv. Funct. Mater. 17, 3363(2007).CrossRefGoogle Scholar
4 Rai, P., Mohapatra, D. R., Hazra, K. S., Misra, D. S., and Tiwari, S. P., Appl. Phys. Lett. 93, 1921 (2008).CrossRefGoogle Scholar
5 Boccaccini, A. R. and Chen, Q., Adv. Funct. Mater. 17, 2815 (2007).CrossRefGoogle Scholar
6 Grow, R. J., Wang, Q., Cao, J., Wang, D., and Dai, H., Appl. Phys. Lett. 86, 093104 (2005).CrossRefGoogle Scholar
7 Chang, N., Su, C., and Chang, S., Appl. Phys. Lett. 92, 063501 (2008).CrossRefGoogle Scholar
8 Tong, J. and Sun, Y., Nanotechnology, 6, 519(2007).Google Scholar
9 Terranova, M.L and Carlo, A.D., J. Phys: Condens. Matter. 19, 225004 (2007).Google Scholar
10 Xue, W. and Cui, T., Sensors and Actuators A: Physical 136, 510 (2007).CrossRefGoogle Scholar
11 Aldo, R. B. and Milo, S.P.S., Carbon 44, 3149 (2006).Google Scholar
12 Guduru, M., Francis, A., Dobbins, T. A., Mater. Res. Soc. Symp. Proc. 858E, HH13.29.1 (2005).Google Scholar
13 Ma, C., Zhang, W., Zhua, Y., Jia, L.i., Zhanga, R., Koratkarb, N., Liang, J., Carbon 46, 706 (2008).CrossRefGoogle Scholar
14 Kordas, K., Mustonen, T., Toth, G., Vahakangas, J., Uusimaki, A., Jantunen, H., Gupta, A., Rao, K. V., Vajtai, R., and Ajayan, P. M., Chem. Mater. 19, 787(2007).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fast and Controlled Integration of Carbon Nanotubes into Microstructures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fast and Controlled Integration of Carbon Nanotubes into Microstructures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fast and Controlled Integration of Carbon Nanotubes into Microstructures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *