Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-16T14:53:13.328Z Has data issue: false hasContentIssue false

Fabrication of High Performance Organic Thin Film Transistor Arrays and Application to 5-inch Flexible Displays

Published online by Cambridge University Press:  31 January 2011

Yoshihide Fujisaki
Affiliation:
fujisaki.y-hu@nhk.or.jp
Tatsuya Takei
Affiliation:
takei.t-js@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Yoshiki Nakajima
Affiliation:
nakajima.y-iq@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Hiroto Sato
Affiliation:
satou.h-ga@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Mitsunori Suzuki
Affiliation:
suzuki.m-da@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Hirohiko Fukagawa
Affiliation:
fukagawa.h-fe@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Genichi Motomura
Affiliation:
motomura.g-fe@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Daisuke Kumaki
Affiliation:
kumaki@strlstaff.strl.nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Toshihiro Yamamoto
Affiliation:
yamamoto.t-ha@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Hideo Fujikake
Affiliation:
fujikake.h-ha@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Taiichiro Kurita
Affiliation:
kurita.t-hm@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Shizuo Tokito
Affiliation:
tokito.s-eu@nhk.or.jp, NHK Science&Technology Res. lab, Tokyo, Japan
Get access

Abstract

We have demonstrated a 5-inch flexible color liquid crystal display (LCD) and organic light emitting display (OLED) driven by low-voltage operation organic TFT. In order to achieve high-quality and high-resolution moving images, OTFTs with high performances such as a high mobility, high ON/OFF ratio, low sub-threshold slope (SS) and low operating voltage, are developed. We fabricated pentacene-based low-voltage operation OTFT with a Ta2O5 gate dielectric prepared at a low temperature process. The resulting OTFT array showed a high mobility of 0.3-0.4 cm2/Vs, ON/OFF ratio over 107, VTH=2.7V, and low SS=0.3 V/decade. OTFTs with solution-processable materials such as fluoropolymer gate dielectric and liquid-crystalline semiconducting polymers, PBTTT, were also investigated. Electrical characteristics and stabilities of these devices will be discussed. In the final section, we will demonstrate OTFT-driven flexible displays. Both of the flexible LC device and the OLED device were successfully integrated on the pentacene-based OTFT arrays. Printing and lamination techniques were introduced to assemble the flexible LC device. Phosphorescent polymer materials, which can be patterned by ink-jet printing, were used for emitting layer of OLED. Color moving images were successively shown on the resulting 5-inch displays using an active-matrix driving technique of the OTFT at a low driving voltage of 15V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., and Weber, W.: J. Appl. Phys. 92, 5159 (2002).Google Scholar
2. McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M. L., Kline, R. J., McGehee, M. D., and Toney, M. F., Nat. Mater. 5, 328 (2006).Google Scholar
3. Huitema, E., Gelinck, G., van der Putten, B., Cantatore, E., Kuijk, K., Hart, K., and de Leeuw, D., J. Soc. Inf. Dis. 10, 195 (2002).Google Scholar
4. Sekitani, T., nakajima, H., Maeda, H., Fukushima, T., Aida, T., hata, K., and Someya, T., Nature Mater. 8, 494 (2009).Google Scholar
5. Yagi, I., Hirai, N., Miyamoto, Y., Noda, M., Imaoka, A., Yoneya, N., Nomoto, K., Kasahara, J., Yumoto, A., and Urabe, T., J. Soc. Inf. Dis. 16, 15 (2008).Google Scholar
6. Iino, Y., Inoue, Y., Fujisaki, Y., Fujikake, H., Sato, H., Kawakita, M., Tokito, S., and Kikuchi, H., Jpn. J. Appl. Phys. 42, 299 (2003).Google Scholar
7. Fujisaki, Y., Sato, H., Takei, T., Yamamoto, T., Fujikake, H., Tokito, S., and Kurita, T., J. Soc. Inf. Dis. 16, 1251 (2008).Google Scholar
8. Mizukami, M., Hirohata, N., Iseki, T., Ohtawara, K., Tada, T., Yagyu, S., Abe, T., Suzuki, T., Fujisaki, Y., Inoue, Y., Tokito, S. and Kurita, T., IEEE Electron Dev. Lett. 27, 249 (2006).Google Scholar
9. Veres, J., Ogier, S., Lloyd, G., and Leeuw, D. de.: Chem. Mater. 16, 4543 (2004).Google Scholar
10. Umeda, T., Kumaki, D., and Tokito, S., Org. Electron. 9, 545 (2008).Google Scholar
11. Yamamoto, T. and Takimiya, K.: J. Am. Chem. Soc. 129, 2224 (2007).Google Scholar
12. Umeda, T., Kumaki, D., and Tokito, S., J. Appl. Phys. 101, 054517 (2007).Google Scholar
13. De Vusser, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., Appl. Phys. Lett. 88, 103501 (2006).Google Scholar
14. Sato, H., Fujikake, H., Kikuchi, H., Kurita, T., and Sato, F., Liquid Crystal. 32, 221 (2005).Google Scholar
15. Fukagawa, H., Watanabe, K., Tsuzuki, T., and Tokito, S., Appl. Phys. Lett. 93, 133312 (2008).Google Scholar
16. Suzuki, M., Fukagawa, H., Nakajima, Y., Tsuzuki, T., Takei, T., Yamamoto, T., and Tokito, S., J. Soc. Inf. Dis. 17, 1037 (2009).Google Scholar
17. Nakajima, Y., Takei, T., Fujisaki, Y., Suzuki, M., Fukagawa, H., Motomura, G., Sato, H., Yamamoto, T., and Tokito, S., Proc. of Euro. Display'09. 21.3, (2009).Google Scholar