Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-wzh95 Total loading time: 0.443 Render date: 2022-01-21T09:52:01.267Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Fabrication and Optimization of a-Si:H n-i-p Single-junction Solar Cells with 8 Å/s Intrinsic Layers of Protocrystalline Si:H Materials

Published online by Cambridge University Press:  01 February 2011

Xinmin Cao
Affiliation:
xcao@physics.utoledo.edu, University of Toledo, Department of Physics and Astronomy, 2801 West Bancroft St., Toledo, OH, 43606, United States
Wenhui Du
Affiliation:
wenhui.du@utoledo.edu, University of Toledo, Department of Physics and Astronomy, Toledo, OH, 43606, United States
Y. Ishikawa
Affiliation:
ishikawa@physics.utoledo.edu, University of Toledo, Department of Physics and Astronomy, Toledo, OH, 43606, United States
Xianbo Liao
Affiliation:
xianbo.liao@utoledo.edu, University of Toledo, Department of Physics and Astronomy, Toledo, OH, 43606, United States
Robert W. Collins
Affiliation:
robert.collins@utoledo.edu, University of Toledo, Department of Physics and Astronomy, Toledo, OH, 43606, United States
Xunming Deng
Affiliation:
dengx@physics.utoledo.edu, University of Toledo, Department of Physics and Astronomy, Toledo, OH, 43606, United States
Get access

Abstract

At the University of Toledo (UT), we have investigated hydrogenated amorphous silicon (a-Si:H) n-i-p solar cells with intrinsic layers deposited at high rates, ~ 8 Å/s, using our UT multi-chamber load-locked PECVD system. a-Si:H i-layers were grown with a VHF plasma density of ~ 0.2 W/cm2 and a frequency of 70 MHz using various hydrogen dilution levels. It is observed from the current-voltage (I-V) device performance characteristics that the open-circuit voltage (Voc) increases with increasing hydrogen dilution reaching a maximum and then decreasing. This drop in Voc can be attributed to the transition region (or protocrystalline regime) from an amorphous phase into a mixed amorphous+nanocrystalline (a + nc) phase for the i-layer. An initial efficiency of 9.99% (Voc = 0.986 V, Jsc = 13.98 mA/cm2, FF = 72.5%) was obtained. Quantum efficiency (QE) measurement has shown that the blue light response increases as the hydrogen dilution increases. Very good blue light spectral response with QE values over 0.7 at the wavelength of 400 nm have been obtained for a-Si:H cells made under specific deposition conditions in which tailored protocrystalline silicon materials were incorporated at the i/p interface region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Deng, X. and Schiff, E., a chapter in The Handbook of Photovoltaic Science and Engineering, edited by Luque, A. & Hegedus, S., (John Willey & Sons, Ltd., 2003).Google Scholar
2 Wronski, C. R. and Collins, R. W., Solar Energy 77, 877885 (2004).CrossRefGoogle Scholar
3 Collins, R. W., Ferlauto, A. S., Ferreira, G. M., Chen, C., Koh, J., Koval, R. J., Lee, Y., Pearce, J. M., and Wronski, C. R., Solar Energy Materials & Solar Cells 78, 143 (2003).CrossRefGoogle Scholar
4 Du, W., Liao, X., Yang, X., Povolny, H., Xiang, X., Deng, X., and Sun, K., Solar Energy Materials and Solar Cells 90, 10981104 (2006).CrossRefGoogle Scholar
5 Yan, B., Yang, J., Yue, G., and Guha, S., 2003 MRS Spring Meeting, (San Francisco, CA; USA; 22-25 Apr. 2003), pp. 363368 (2003).Google Scholar
6 Guha, S., Yang, J., Banerjee, A., Yan, B., and Lord, K., Solar Energy Materials and Solar Cells 78, 329347 (2003).CrossRefGoogle Scholar
7 Cao, X., Du, W., Yang, X., and Deng, X., 4th World Conference on Photovoltaic Energy Conversion, May 2006, Waikoloa HI (IEEE, Piscataway NJ, 2006).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication and Optimization of a-Si:H n-i-p Single-junction Solar Cells with 8 Å/s Intrinsic Layers of Protocrystalline Si:H Materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fabrication and Optimization of a-Si:H n-i-p Single-junction Solar Cells with 8 Å/s Intrinsic Layers of Protocrystalline Si:H Materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fabrication and Optimization of a-Si:H n-i-p Single-junction Solar Cells with 8 Å/s Intrinsic Layers of Protocrystalline Si:H Materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *