Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T10:10:48.387Z Has data issue: false hasContentIssue false

The Extraction of Minority Carrier Lifetime from the Current-Voltage Characteristics of Si/Si1−xGex Devices

Published online by Cambridge University Press:  22 February 2011

T. Ghani
Affiliation:
Stanford Electronics Laboratories, Stanford, CA; Hewlett Packard Company, Palo Alto, CA
J. L. Hoyt
Affiliation:
Stanford Electronics Laboratories, Stanford, CA; Hewlett Packard Company, Palo Alto, CA
D. B. Noble
Affiliation:
Stanford Electronics Laboratories, Stanford, CA; Hewlett Packard Company, Palo Alto, CA
J. F. Gibbons
Affiliation:
Stanford Electronics Laboratories, Stanford, CA; Hewlett Packard Company, Palo Alto, CA
J. E. Turner
Affiliation:
Stanford Electronics Laboratories, Stanford, CA; Hewlett Packard Company, Palo Alto, CA
T. I. Kamins
Affiliation:
Stanford Electronics Laboratories, Stanford, CA; Hewlett Packard Company, Palo Alto, CA
Get access

Abstract

The extraction of recombination lifetime from the current-vol tage characteristics of diode structures containing Si1−xGex strained layers is discussed. Electrical measurements are used in conjunction with computer simulations to extract minority carrier lifetime in Si1−xGex layers with various oxygen concentrations. The minority carrier lifetime in Si1−xGex increases from several psec at an oxygen concentration of 2×1020 cm−3, to greater than 0.5 μs at concentrations below 3×1017 cm−3. The structures are analyzed for sensitivity of the current characteristics to Si1−xGex minority carrier lifetime. Calculations predict that the maximum lifetime which can be extracted from such structures is greater than 100 μsec. However, due to limitations imposed by perimeter currents, the maximum lifetime which can be extracted from our diode structures is on the order of 3 μsec. Maximizing area to perimeter ratio of the diode structures and moving the Si1−xGex-SiO2 interface away from the active device region is required in order to increase the maximum extracted lifetime from such structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFErences:

[1]. King, C. A., Hoyt, J. L., Gronet, C. M., Gibbons, J. F., Scott, M. P. and Turner, J., IEEE Electron Device Lett. 10, 52 (1989).CrossRefGoogle Scholar
[2]. Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M., Gibbons, J. F., Scott, M. P., Laderman, S. S., Rosner, S. J., Turner, J. E., and Kamins, T. I., Thin Solid Films 184, 93 ( 1990 ).CrossRefGoogle Scholar
[3]. Hoyt, J. L., Noble, D. B., Gnani, T., Gibbons, J. F., Scott, M. P., Laderman, S. S., Rosner, S. J., Turner, J. E. and Kamins, T. I., in Proceedings of the Second International Conference on Electronic Materials, 1990 edited by Chang, R. P. H., Sugano, T., and Nguyen, V. T. ( Materials Research Society, Pittsburg, PA, 1991 ), Vol. ICEM- 90, p. 551.Google Scholar
[4]. Gronet, C. M., Ph. D. thesis, Stanford University, October 1988.Google Scholar
[5]. King, C. A., Hoyt, J. L. and Gibbons, J. F., IEEE Trans. Electron Devices 36, 2093 ( 1989 ).CrossRefGoogle Scholar
[6]. King, C. A., Ph. D. thesis, Stanford University, June 1989.Google Scholar
[7]. Ghani, T., Hoyt, J. L., Noble, D. B., Gibbons, J. F., Turner, J. E. and Kamins, T. I., Appl. Phys. Lett. 58, 1317 ( 1991 )CrossRefGoogle Scholar
[8]. King, C. A., Hoyt, J. L., Noble, D. B., Gibbons, J. F., Scott, M. P., Kamins, T. I. and Laderman, S. S., IEEE Electron Device Lett. 10, 159 ( 1989 ).CrossRefGoogle Scholar
[9]. Yu, Z. P. and Dutton, R. W., ‘SEDAN III-A Generalized Electronic Material Device Analysis Program’, Stanford Electronics Labs., Stanford, CA, 1985 Google Scholar
[10]. Muller, R. S. and Kamins, T. I., Device Electronics for Integrated Circuits ( Wiley, NY, 1986 ), p. 225.Google Scholar
[11]. Kamins, T. I., Nauka, K., Kruger, J. B., Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M. and Gibbons, J. F., Electron Device Lett. 10, 503 ( 1989 ).CrossRefGoogle Scholar