Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-22T01:51:40.830Z Has data issue: false hasContentIssue false

Excimer Laser Crystallized Amorphous Silicon Films: Effects of Shot Density and Substrate Temperature

Published online by Cambridge University Press:  21 February 2011

R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Laser crystallization of a-Si thin films has been shown to produce materials with enhanced electrical properties and devices that are faster and capable of carrying higher currents. The quality of these polycrystalline films depends on a number of parameters such as laser energy density, shot density, substrate temperature, and the quality of the starting material. We find that the average grain size and transport properties of laser crystallized amorphous silicon films increase substantially with laser energy density, increase only slightly with laser shot density, and are unaffected by substrate temperatures of up to 400°C. The best films are those processed in vacuum but films of fair quality can also be obtained in air and nitrogen atmospheres.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71., 435 (1986).Google Scholar
2. Ready, S. E., Boyce, J. B., Bachrach, R. Z., Johnson, R. I., Winer, K., Anderson, G. B., and Tsai, C. C., Mat. Res. Soc. Proc. 149, 345 (1989).Google Scholar
3. Bachrach, R. Z., Winer, K., Boyce, J. B., Ponce, F. A., Ready, S. E., Johnson, R., Anderson, G. B., Mat. Res. Soc. Proc. 157, 467 (1990).CrossRefGoogle Scholar
4. Winer, K., Bachrach, R. Z., Johnson, R. I., Ready, S. E., Anderson, G. B., and Boyce, J. B., Mat. Res. Soc. Proc. 164, 183 (1990).Google Scholar
5. Sameshima, T., Hara, M., and Usui, S., Proceedings Polyse 90, to be published.Google Scholar
6. Bachrach, R. Z., Boyce, J. B., Ready, S. E., and Anderson, G. B., Proceedings Polyse 90, to be published.Google Scholar
7. Anderson, G. B., Bachrach, R. Z., Winer, K., Boyce, J. B., Ponce, F. A., Johnson, R. I., and Ready, S. E., Mat. Res. Soc. Proc. 192, 669 (1990)Google Scholar
8. Winer, K., Anderson, G. B., Ready, S. E., Bachrach, R. Z., Johnson, R. I., Ponce, F. A., and Boyce, J. B., Appl. Phys. Lett. 57, 2222 (1990).Google Scholar
9. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., Electron, J.. Materials 19, 241 (1990).Google Scholar