Hostname: page-component-6d856f89d9-76ns8 Total loading time: 0 Render date: 2024-07-16T09:07:20.109Z Has data issue: false hasContentIssue false

Excess Pu Disposition in Zirconolite-Rich synroc

Published online by Cambridge University Press:  15 February 2011

E. R. Vance
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ nucleus.ansto.gov.au
A. Jostsons
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ nucleus.ansto.gov.au
R. A. Day
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ nucleus.ansto.gov.au
C. J. Ball
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ nucleus.ansto.gov.au
B. D. Begg
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ nucleus.ansto.gov.au
P. J. Angel
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ nucleus.ansto.gov.au
Get access

Abstract

The design philosophy of a zirconolite-rich Synroc variant, hot-pressed at 1200°C/20 MPa, for immobilizing excess weapons Pu is summarized. Phase analysis of Synroc variants containing different (nominated) proportions of zirconolite, Pu and Gd is presented. The presence of hollandite allows the incorporation of radioactive Cs to reduce diversion risks. The influence of chloride impurities on Synroc properties was studied to bear on the usage of encapsulated 137CSCI for this purpose. The maximum incorporation of the neutron poisons Gd and Hf in solid solution in zirconolite from XRD/SEM is 0.5–0.7 and 1.0 formula units respectively, with the value for Gd depending on the charge compensation scheme employed. The use of deep boreholes for disposal would promote the self-annealing of radiation damage from α-decays. The production of zirconolite-rich Synroc ceramics via fired PuO2 or a liquid Pu/microsphere precursor is also discussed. The choice of processing atmosphere for a zirconolite-rich ceramic containing Pu is oxidizing to neutral for Pu-only and Pu + Cs immobilization options, and reducing for a Pu + fission product option

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “Management and Disposition of Excess Weapons Plutonium”, Committee on International Security and Arms Control, National Academy of Sciences, National Academy Press, Washington DC, USA (1994).Google Scholar
2. Hough, A. and Marples, J.A.C., The Radiation stability of Synroc:Final report, AEA-FS-0201 (H), AEA Technology, UK.Google Scholar
3. Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L. and Hobbs, L.W., J. Nucl. Mater. 126, 245 (1984).Google Scholar
4. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M. and Ramm, E.J., in Radioactive Waste Forms for the Future, Eds. Lutze, W. and Ewing, R.C., Elsevier, North Holland, 233 (1988).Google Scholar
5. Vance, E.R., Begg, B.D., Day, R.A. and Ball, C.J., Zirconolite-based ceramics for Actinide Wastes, in Scientific Basis for Nuclear Waste Management XVIII, Eds. Murakami, T. and Ewing, R.C., Materials Research Society, Pittsburgh, PA, USA, 775 (1995).Google Scholar
6. Vance, E.R., Ball, C.J., Day, R.A., Smith, K.L., Blackford, M.G., Begg, B.D. and Angel, P.J., J.Alloys and Compounds, 213/214, 406 (1994).Google Scholar
7. Clinard, F. W. Jr., Rohr, D.L. and Roof, R.B., in Radiation Effects in Insulators, Eds. Arnold, G.W. and Borders, J.A., North-Holland, Amsterdam, 581 (1984).Google Scholar
8. Wald, J.W. and Offermann, P., in Scientific Basis for Nuclear Waste Management, Vol.4, Ed. Lutze, W., North-Holland, New York, 369 (1982).Google Scholar
9. Karioris, F.G., Gowda, K.A., Cartz, L. and Labbe, J.C., J. Nucl. Mater., 108/109, 748 (1982).Google Scholar
10. White, T.J., Ewing, R.C., Wang, L.M., Forrester, J.S. and Montross, C., in Scientific Basis for Nuclear Waste Management XVIII, Eds. Murakami, T. and Ewing, R.C., Materials Research Society, Pittsburgh, PA, USA, 1413 (1995).Google Scholar
11. Wald, J.W. and Weber, W.J., Advances in Ceramics, Vol.8, Nuclear Waste Management, Eds. Wicks, G.G. and Ross, W.A., American Ceramic Society, Columbus, Ohio, 71 (1983).Google Scholar
12. Blackford, M.G., Smith, K.L. and Hart, K.P., in Scientific Basis for Nuclear Waste Management, XV, Ed. Sombret, C., Materials Research Society, Pittsburgh, PA, USA, 243 (1992).Google Scholar
13. White, T.J., Amer. Mineral., 69, 1156 (1984).Google Scholar
14. Hart, K.P., Vance, E.R., Day, R.A., Begg, B.D., Angel, P.J. and Jostsons, A., submitted to this conference.Google Scholar
15. Muraoka, S., Mitamura, H., Matsumoto, S., Vance, E.R. and Hart, K.P., Proc. 9th Pacific Basin Nuclear Conference, Sydney, Ed. McDonald, N.R., Institution of Engineers Australia, 873 (1994).Google Scholar
16. Marples, J.A.C., Nucl. Instr. Meth. Phys. Res. B32, 480 (1988).Google Scholar
17. Ball, C.J., Blake, R.G., Cassidy, D.J. and Woolfrey, J.L., J. Nucl. Mater. 151, 151 (1988).Google Scholar
18. Sizgek, E.R., Bartlett, J.R., Woolfrey, J.L. and Vance, E.R., in Scientific Basis for Nuclear Waste Management, Eds. Van Konynenburg, R. and Barkatt, A.A., Materials Research Society, Pittsburgh, PA, USA, 305 (1994).Google Scholar
19. Ramsey, W.G., Bibler, N.E. and Meaker, T.F., Proc. Waste '95, Tucson, AZ, USA, in press (1995).Google Scholar
20. Ewing, R.C., Lutze, W. and Weber, W.J., J.Mater. Res., 10, 243 (1995).Google Scholar
21. Scheetz, B., Komarneni, S., Fajun, W., Yang, L.J., Olinnen, M. and Roy, R., in Scientific Basis for Nuclear Waste Management VII, Eds. Jantzen, C.M., Stone, J.A. and Ewing, R.C., Materials Research Society, Pittsburgh, PA, USA, 903 (1985).Google Scholar
22. Bjorklund, C.J., J. Amer. Chem. Soc., 79, 158 (1957).Google Scholar
23. Roy, R., Vance, E.R. and Alamo, J., Mater. Res. Bull., 17, 585 (1982).Google Scholar