Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-x8cck Total loading time: 0.221 Render date: 2022-11-28T09:39:54.863Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Evaluation of the Thermodynamic Properties and Phase Equilibria of the Ordered γ’ and Disordered γ Phases in the Ni-Al-Ta System

Published online by Cambridge University Press:  11 February 2011

Shihuai Zhou
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802.
Long-Qing Chen
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802.
Rebecca A. MacKay
Affiliation:
Materials Division, NASA Glenn Research Center, 2100 Brookpark Road, Cleveland, OH 44135.
Zi-Kui Li u
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802.
Get access

Abstract

The phase equilibria and thermodynamic properties of the ternary Ni-Al-Ta system on Ni-rich side were analyzed. Thermodynamic descriptions of the liquid, γ-fcc, γ'-L12, and π-Ni6AlTa phases were obtained using the CALPHAD (CALculation of PHase Diagrams) technique. The thermodynamics of γ-fcc and γ'-L12 phases were modeled with a single Gibbs energy function taking into account the crystallographic relation between the two phases. The ternary interaction parameters of the liquid and fcc phases were also determined. The calculated phase diagrams of the ternary Ni-Al-Ta system show a good agreement with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, Academic Press Inc., New York, (1970).Google Scholar
Saunders, N. and Miodownik, A. P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford; New York, (1998).Google Scholar
3. Kaufman, L., Calphad 15, 261282 (1991).CrossRefGoogle Scholar
4. Dupin, N., Ph. D. Thesis, Institute national Polytechnique, Grenoble, France (1995).Google Scholar
5. Ansara, I., Dupin, N., Lukas, H. L. and Sundman, B., J. Alloy. Compd. 247, 2030 (1997).CrossRefGoogle Scholar
6. Kattner, U. R., unpublished work, NIST, Gaithersburg, USA, (1990).Google Scholar
7. Ansara, I. and Selleby, M., Calphad 18, 99107 (1994).CrossRefGoogle Scholar
8. Saunders, N., in COST 507 Rand, M. H., Ed. (European Communities, Luxembourg, 1998), Vol. 2, pp. 8388.Google Scholar
9. Cui, Y. W. and Jin, Z. P., Z. Metallkd. 90, 233241 (1999).Google Scholar
10. Giessen, B. C. and Grant, N. J., ACTA Metall. 15, 871877 (1967).CrossRefGoogle Scholar
11. Willemin, P., Dugue, O., Durand-Charre, M. and Davidson, J. H., Mater. Sci. Technol. 2, 344348 (1986).CrossRefGoogle Scholar
12. Nash, P. and West, D. T. F., Met. Sci. 13, 670676 (1979).CrossRefGoogle Scholar
13. Willemin, P., Durand-Charre, M. and Ansara, I., Report EUR. 2, 955964 (1986).Google Scholar
14. Hong, Y. M., Mishima, Y. and Suzuki, T., Mater. Res. Soc. Symp. Proc. 133, 429440 (1989).CrossRefGoogle Scholar
15. Palm, M., Sanders, W. and Sauthoff, G., Z. Metallkd. 87, 390398 (1996).Google Scholar
16. Dinsdale, A. T., Calphad 15, 317425 (1991).CrossRefGoogle Scholar
17. Redlich, O. and Kister, A. T., Ind. and Eng. Chem. 40, 345348 (1948).CrossRefGoogle Scholar
18. Ansara, I., Sundman, B. and Willemin, P., Acta Metall. 36, 977982 (1988).CrossRefGoogle Scholar
19. Dupin, N., Ansara, I. and Sundman, B., Calphad 25, 279298 (2001).CrossRefGoogle Scholar
20. Liu, Z. K. and Chang, Y. A., Metall. Mater. Trans. A 30, 10811095 (1999).CrossRefGoogle Scholar
21. Sundman, B., Ansara, I., Hillert, M., Inden, G., Lukas, H. L. and Kumar, K. C. H., Z. Metallk. 92, 526532 (2001).Google Scholar
22. Jansson, B., Evaluation of Paramters in Thermochemical Models Using Different Types of Experimental Data Simultaneously, Royal Institute of Technology, Stockholm, Sweden, 1984, (1984).Google Scholar
23. Sundman, B., Jansson, B. and Andersson, J. O., Calphad 9, 153190 (1985).CrossRefGoogle Scholar
24. Zhou, S. H. and Liu, Z. K., Metall. Mater. Trans. A 33, 27812787 (2002).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evaluation of the Thermodynamic Properties and Phase Equilibria of the Ordered γ’ and Disordered γ Phases in the Ni-Al-Ta System
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Evaluation of the Thermodynamic Properties and Phase Equilibria of the Ordered γ’ and Disordered γ Phases in the Ni-Al-Ta System
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Evaluation of the Thermodynamic Properties and Phase Equilibria of the Ordered γ’ and Disordered γ Phases in the Ni-Al-Ta System
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *