Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-11T17:39:52.520Z Has data issue: false hasContentIssue false

ESR Of Graphite-Like Amorphous Carbon Thin Film In The 20 – 340 K Temperature Range

Published online by Cambridge University Press:  26 February 2011

Gustavo A. Viana
Affiliation:
gviana@ifi.unicamp.br, UNICAMP, Instituto de Física Gleb Wataghin, Cidade Universitária Zeferino Vaz, 13083-970 - Campinas, 6165, Brazil>
Francisco C. Marques
Affiliation:
marques@ifi.unicamp.br, UNICAMP, Instituto de Física Gleb Wataghin, Cidade Universitária Zeferino Vaz, 13083-970 - Campinas, 6165, Brazil
Get access

Abstract

Electron spin resonance of graphite-like a-C thin films is investigated in the 20 K up to 340 K temperature range. The films with sp2 concentration of about 90 % (determined by electron energy loss spectroscopy), with no measurable optical band gap, were prepared by ion beam assisted sputtering. The results revealed an unexpected low density of paramagnetic centers, ascribed to itinerant states (conduction electrons) and not to localized states usually reported for a-C with band gap higher than 1.0 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sjöström, H., Stafström, S., Bowman, M. and Sundgren, J. E., Phys. Rev. Lett. 75, 1336 (1995).Google Scholar
2. Kim, E., Chen, C., Köhler, T., Elstner, M. and Frauenheim, T., Phys. Rev. Lett. 86, 652 (2001).Google Scholar
3. Teter, D. M. and Hemley, R. J., Science 271, 53 (1996).Google Scholar
4. Liu, A. Y. and Wentzcovitch, R. M., Phys. Rev. B 50, 10362 (1994).Google Scholar
5. Dutta, U., Chatterjee, P.; J. Appl. Phys. 96(4): 22612271 (2004).Google Scholar
6. Ganguly, G., Carlson, D.E., Hegedus, S.S., et al; Appl. Phys. Lett. 85(3): 479481 (2004).Google Scholar
7. Anderson, P. W., Phys. Rev. 109, 1492 (1958).Google Scholar
8. Hong, S. J., Lee, S., Park, J. B., et al; Appl. Phys. Lett. 83(16): 34193421 (2003).Google Scholar
9. Barklie, R.C., Diam. Rel. Mater. 10 (2001) 174181.Google Scholar
10. Oliveira, M. H. Jr, Barbieri, P. F., Lacerda, R. G. and Marques, F. C., Thin Solid Films 469–470, pp. 112114 (2004).Google Scholar
11. Jones, B. J., Barklie, R. C., Smith, G., Mkami, H. El et al., Diam. Rel. Mater. 12, 116 (2003).Google Scholar
12. Bardeleben, H. J., Cantin, J. L., Zellama, K. and Zeinert, A., Diam. Rel. Mater. 12, 124 (2003).Google Scholar
13. Abragam, A., Bleaney, B., EPR of transitions Ions, Clarendon Press, Oxford, (1970).Google Scholar
14. Taylor, R. H., Adv. Phys. 24, 681 (1975).Google Scholar
15. Barnes, S. E., Adv. Phys. 30, 801 (1981).Google Scholar
16. Sercheli, M. S., Kopelevich, Y., Silva, R. R., Torres, J. H. S. and Rettori, C., Sol. Stat. Comm. 121, 579 (2002).Google Scholar