Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-bzjh5 Total loading time: 0.706 Render date: 2021-05-16T23:01:59.134Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Erbium-silicon-oxide Nano-complexes Prepared by Wet Chemical Synthesis

Published online by Cambridge University Press:  10 February 2011

H. Isshiki
Affiliation:
FOM-Institute Amolf, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Department of Electronic Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
M.J.A. de Dood
Affiliation:
FOM-Institute Amolf, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
T. Kimura
Affiliation:
Department of Electronic Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
A. Polman
Affiliation:
FOM-Institute Amolf, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Get access

Abstract

An entirely new method to fabricate optically active and carrier-mediated excitable erbium complexes on silicon is presented. The Er-Si-O nano-complexes are formed by spin-coating a Si (100) substrate with an ErC13 solution, followed by a rapid thermal oxidation and annealing sequence (RTOA). Intense room-temperature luminescence is observed from the Er-Si-O nano-complexes, with a line width as narrow as 4 meV at room temperature. The Er emission at 1.53 μm can be excited both directly and through photo carriers. Formation and optical activation of the Er-Si-O nano-complexes are discussed. In addition, an application of the wet chemical synthesis technique to incorporation of the Er-Si-O nano-complexes into nano-porous silicon waveguides is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., Poate, J.M., Appl. Phys. Lett. 64 2842 (1994).CrossRefGoogle Scholar
2. Franzo, G., Priolo, F., Coffa, S., Polman, A., Carnera, A., Appl. Phys. Lett. 64 2235 (1994).CrossRefGoogle Scholar
3. Zhao, X., Komuro, S., Isshiki, H., Aoyagi, Y., Sugano, T., Appl. Phys. Lett. 74 120 (1999).CrossRefGoogle Scholar
4. Zemon, S., Lambert, G., Miniscalco, W. J., and Thompson, B. A., Sources, Fiber Laser and III, Amplifiers, Digonnet, M. J. F. and Snitzer, E., Eds., Proc. SPIE 1581 91 (1992).CrossRefGoogle Scholar
5. Srivasta, A. K., Zyskind, J. L., Sulhoff, J. W., Evankow, J. D. Jr, and Mills, M. A., Optical Fiber Communication Conference, Vol. 2, 1996 Technical Digest Series., 33 (1996).Google Scholar
6. Li, C., Wyon, C., Moncorge, R., IEEE J.Quant.Elect. 28 1209 (1992).CrossRefGoogle Scholar
7. Gruber, J.B., Henderson, J.R., Muramoto, M., Rajnak, K., Conway, J.G., J. Chem. Phys. 45, 477 (1966).CrossRefGoogle Scholar
8. Isshiki, H.,Polman, A., Kimura, T., J. Luminescence 102–103 819 (2003).CrossRefGoogle Scholar
9. Shin, J. H., Serna, R., Hoven, G. V. van den, Polman, A., H, W. G. J.. Sark, M. van, and Vredenberg, A. M., Appl. Phys. Lett. 68 46 (1996).CrossRefGoogle Scholar
10. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Saito, A., Appl. Phys. Lett. 65, 983 (1994).CrossRefGoogle Scholar
11. Zhao, X., Komuro, S., Isshiki, H., Maruyama, S., Aoyagi, Y., and Sugano, T., Appl. Surf. Sci. 113/114 121 (1997).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Erbium-silicon-oxide Nano-complexes Prepared by Wet Chemical Synthesis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Erbium-silicon-oxide Nano-complexes Prepared by Wet Chemical Synthesis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Erbium-silicon-oxide Nano-complexes Prepared by Wet Chemical Synthesis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *