Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T07:07:06.688Z Has data issue: false hasContentIssue false

Epitaxial Growth and Characterization of 4H-SiC(11–20) and (03–38)

Published online by Cambridge University Press:  11 February 2011

T. Kimoto
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
K. Hashimoto
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
K. Fujihira
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
K. Danno
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
S. Nakamura
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
Y. Negoro
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
H. Matsunami
Affiliation:
Department of Electronic Science and Engineering, Kyoto University Yoshidahonmachi, Sakyo, Kyoto 606–8501, Japan
Get access

Abstract

Homoepitaxial growth, impurity doping, and diode fabrication on 4H-SiC(11–20) and (03–38) have been investigated. Although the efficiency of nitrogen incorporation is higher on the non-standard faces than on (0001), a low background doping concentration of 2∼3×1014 cm-3 can be achieved. On these faces, boron and aluminum are less effectively incorporated, compared to the growth on off-axis (0001). 4H-SiC(11–20) epilayers are micropipe-free, as expected. More interestingly, almost perfect micropipe closing has been realized in 4H-SiC (03–38) epitaxial growth. Ni/4H-SiC(11–20) and (03–38) Schottky barrier diodes showed promising characteritics of 3.36 kV-24 mΩcm2 and 3.28 kV–22 mΩcm2, respectively. The breakdown voltage of 4H-SiC(03–38) Schottky barrier diodes was significantly improved from 1 kV to above 2.5 kV by micropipe closing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsunami, H. and Kimoto, T., Mater. Sci. & Eng. R20, 125 (1997).Google Scholar
2. Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K. and Sugawara, Y., IEEE Electron Device Lett. 20, 611 (1999).Google Scholar
3. Hirao, T., Yano, H., Kimoto, T., Matsunami, H. and Shiomi, H., Mater. Sci. Forum 389–393, 1065 (2002).Google Scholar
4. Neudeck, P.G. and Powell, J.A., IEEE Electron Device Lett. 15, 63 (1994).Google Scholar
5. Takahashi, J., Ohtani, N. and Kanaya, M., J. Crystal Growth 167, 596 (1996).Google Scholar
6. Nakayama, K., Miyanagi, Y., Shiomi, H., Nishino, S., Kimoto, T. and Matsunami, H., Mater. Sci. Forum 389–393, 123 (2002).Google Scholar
7. Kimoto, T., Nakazawa, S., Hashimoto, K. and Matsunami, H., Appl. Phys. Lett. 79, 2761 (2001).Google Scholar
8. Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W. J., Schöner, A. and Nordell, N., phys. stat. sol. (a) 162, 199 (1997).Google Scholar
9. Larkin, D.J., Neudeck, P.G., Powell, J.A., and Matus, L.G., Appl. Phys. Lett. 65, 1659(1994).Google Scholar
10. Yamamoto, T., Kimoto, T. and Matsunami, H., Mat. Sci. Forum 264–268, 111 (1998).Google Scholar
11. Takahashi, J., Ohtani, N. and Kanaya, M., Jpn. J. Appl. Phys. 34, 4694 (1995).Google Scholar
12. Greulich-Weber, S., phys. stat. sol. (a) 162, 95 (1997).Google Scholar
13. Kojima, K., Ohno, T., Fujimoto, T., Katsuno, M., Ohtani, N., Nishio, J., Suzuki, T., Tanaka, T., Ishida, Y., Takahashi, T., and Arai, K., Appl. Phys. Lett. 81, 2974 (2002).Google Scholar
14. Kimoto, T., Danno, K., Fujihira, K., Shiomi, H. and Matsunami, H., Ext. Abstr. of European Conference on Silicon Carbide and Related Materials 2002 (Linköping, 2002), TuP1–23.Google Scholar
15. Si, W., Dudley, M., Glass, R., Tsvetkov, V. and Carter, C.H. Jr, Mat. Sci. Forum 264–268, 429 (1998).Google Scholar
16. Kamata, I., Tsuchida, H., Jikimoto, T. and Izumi, K., Jpn. J. Appl. Phys. 39, 6496 (2000).Google Scholar
17. Nakamura, S., Kumagai, H., Kimoto, T. and Matsunami, H., Appl. Phys. Lett. 80, 3355 (2002).Google Scholar
18. Kamata, I., Tsuchida, H., Jikimoto, T. and Izumi, K., Jpn. J. Appl. Phys. 40, L1012 (2001).Google Scholar
19. Yano, H., Hatayama, T., Uraoka, Y., Fuyuki, T., Kimoto, T., and Matsunami, H., this proceedings.Google Scholar