Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-vq995 Total loading time: 0.251 Render date: 2021-10-20T13:57:25.155Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Enhanced Forward Bias Operation of 4H-SiC PiN Diodes Using High Temperature Oxidation

Published online by Cambridge University Press:  18 July 2014

Craig A. Fisher
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Michael R. Jennings
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Yogesh K. Sharma
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Dean P. Hamilton
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Stephen M. Thomas
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Fan Li
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Peter M. Gammon
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Amador Pérez-Tomás
Affiliation:
Institut Català De Nanociència i Nanotecnologia, 08193, Bellaterra, Barcelona, Spain.
Susan E. Burrows
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
Philip A. Mawby
Affiliation:
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Get access

Abstract

In this paper, high temperature (>1400°C) thermal oxidation has been applied, for the first time, to 4H-SiC PiN diodes with thick (110 μm) drift regions, for the purpose of increasing the carrier lifetime in the semiconductor. PiN diodes were fabricated using 4H-SiC material that had undergone thermal oxidation performed at 1400°C, 1500°C and 1600°C, then were electrically characterized. Forward current-voltage (I-V) measurements showed that thermally oxidized PiN diodes exhibited considerably improved electrical characteristics, with devices oxidized at 1500°C having a forward voltage drop (V F ) of 4.15 V and a differential on-resistance (R on,diff ) of 8.9 mΩ-cm2 at 100 A/cm2 and 25°C. Compared to typical control sample PiN diode characteristics, this equated to an improvement of 8% and 23% for V F and R on,diff , respectively. From analysis of the reverse recovery characteristics, the carrier lifetime of the PiN diodes oxidized at 1500°C was found to be 1.05 μs, which was an improvement of around 30% compared to the control sample PiN diodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chow, T. P., Mater. Sci. Forum. 778780, 10771082 (2014).CrossRef
Sharma, Y. K., Ahyi, A. C., Issacs-Smith, T., Modic, A., Park, M., Xu, Y., Garfunkel, E. L., Dhar, S., Feldman, L. C. and Williams, J. R., IEEE Electron Device Lett. 34(2), 175177 (2013).CrossRef
Kimoto, T., Danno, K. and Suda, J., Phys. Stat. Sol. (B). 245(7), 13271336 (2008).CrossRef
Hiyoshi, T. and Kimoto, T., Appl. Phys. Expr. 2, 041101 (2009).CrossRef
Klein, P. B., Mater. Sci. Forum. 717720, 279284 (2012).CrossRef
Storasta, L. and Tsuchida, H., Appl. Phys. Lett. 90, 062116 (2007).CrossRef
Kawahara, K., Suda, J. and Kimoto, T., J. Appl. Phys. 111, 053710 (2012).CrossRef
Kawahara, K., Suda, J. and Kimoto, T., Mater. Sci. Forum. 717720, 241246 (2012).CrossRef
Thomas, S. M., Jennings, M. R., Sharma, Y. K., Fisher, C. A. and Mawby, P. A., Mater. Sci. Forum. 778780, 599602 (2014).CrossRef
Nakayama, K., Tanaka, A., Nishimura, M., Asano, K., Miyazawa, T., Ito, M. and Tsuchida, H., IEEE Trans. Electron Devices. 59(4), 895901 (2012).CrossRef
Jennings, M. R., Fisher, C. A., Walker, D.. Sanchez, A., Pérez-Tomás, A., Hamilton, D. P., Gammon, P. M., Burrows, S. E., Thomas, S. M., Sharma, Y., Li, F. and Mawby, P. A., Mater. Sci. Forum. 778780, 693696 (2014).CrossRef
Fisher, C. A., Jennings, M. R., Bryant, A. T., Pérez-Tomás, A., Gammon, P. M., Brosselard, P., Godignon, P. and Mawby, P. A., Mater. Sci. Forum. 717720, 993996 (2012).CrossRef
Cheng, L., Agarwal, A. K., O’Loughin, M., Capell, C., Lam, K., Jonas, C., Richmond, J., Burk, A., Palmour, J. W., Ogunniyi, A. A., O’Brien, H. K. and Scozzie, C. J., Mater. Sci. Forum. 740742, 895898 (2013).CrossRef
Salemi, A., Buono, B., Hallén, A., Hassan, J. U., Bergman, P., Zetterling, C. M. and Östling, M., Mater. Sci. Forum. 778780, 836840 (2014).CrossRef
Zippelius, B., Suda, J. and Kimoto, T., Mater. Sci. Forum. 717720, 247250 (2012).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced Forward Bias Operation of 4H-SiC PiN Diodes Using High Temperature Oxidation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enhanced Forward Bias Operation of 4H-SiC PiN Diodes Using High Temperature Oxidation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enhanced Forward Bias Operation of 4H-SiC PiN Diodes Using High Temperature Oxidation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *