Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-kfj7r Total loading time: 0.925 Render date: 2022-12-02T19:54:51.489Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Enhanced CO Oxidation Catalysis of Pt0.1Cu0.9/Fe2O3 Synthesized by Radiolytic Process

Published online by Cambridge University Press:  07 March 2011

Takao A. Yamamoto
Affiliation:
Grad. Sch. Eng., Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Ryota Kitagawa
Affiliation:
Grad. Sch. Eng., Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Satoshi Seino
Affiliation:
Grad. Sch. Eng., Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Takashi Nakagawa
Affiliation:
Grad. Sch. Eng., Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Get access

Abstract

Catalysts in which Pt and Cu are immobilized on support particles of γ-Fe2O3 were synthesized by the radiolytic process and were evaluated for CO oxidation in a gas flow mixture (1% CO, 0.5% O2, 67.2% H2 and N2 balance) by measuring the CO concentration in the outlet gas. The Pt/Cu atomic ratios of the as-synthesized catalysts were determined to be 100:0, 90:10, 78:22, 50:50, 21:79, and 11:89, and the total metal loadings determined by chemical analyses were 10 wt%. Material characterization was performed using X-ray diffraction, X-ray absorption near edge structure, and transmission electron microscopy, and it was indicated that the composite catalysts consist of Pt-Cu bimetallic grains immobilized on the support at higher Pt-loading, while CuO with poor crystallinity is also observed at lower Pt-loading. The catalytic activity decreased as the Pt-loading was decreased to 50 at%, and also with increasing temperature. However, as the Pt-loading was further decreased, the activity contrariwise increased, and increased with increasing temperature up to 100 °C. The sample containing only 11 at% Pt exhibited the highest activity at 100 °C, which is higher than that of the commercial catalyst measured for comparison, and given at a lower temperature than that for the commercial catalyst. This enhanced activity, despite the low Pt-loading, could be attributed to oxygen supply via CuO from the O2-poor atmosphere to PtCu bimetallic grains trapping CO molecules. This new material is promising for use as a catalyst to purify hydrogen gas fed to a polymer electrolyte fuel cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ghenciu, A. F., Curr. Opin. Solid State Mater. Sci., 6(5) (2002) 389399.CrossRefGoogle Scholar
2. Nilekar, A. U., Alayoglu, S., Eichhorn, B., Mavrikakis, M. J. Am. Chem. Soc., 132(21) (2010) 74187428.CrossRefGoogle Scholar
3. Yamamoto, T. A., Nakagawa, T., Seino, S., Nitani, H., Applied Catalysis A: General, 387 (2010) 195202.CrossRefGoogle Scholar
4. Yamamoto, T. A., Nakagawa, T., Seino, S., Nitani, H., Mat. Res. Soc. Symp. Proc., 1217 (2010), 6570.Google Scholar
5. Seino, S., Kinoshita, T., Nakagawa, T., Kojima, T., Taniguchi, R., Okuda, S. and Yamamoto, T. A., J. Nanoparticle Res., 10 (2008)10711076.CrossRefGoogle Scholar
6. Seino, S., Kinoshita, T., Otome, Y., Okitsu, K., Nakagawa, T. and Yamamoto, T. A., Chem. Lett., 32 (2003) 690691 CrossRefGoogle Scholar
7. Belloni, J., Catalysis Today, 113 (2006) 141156.CrossRefGoogle Scholar
8. Nitani, H., Nakagawa, T., Daimon, H., Kurobe, Y., Ono, T., Honda, Y., Koizumi, A., Seino, S., Yamamoto, T.A., Appl. Catal. A: Gen. 326 (2007) 194201.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced CO Oxidation Catalysis of Pt0.1Cu0.9/Fe2O3 Synthesized by Radiolytic Process
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Enhanced CO Oxidation Catalysis of Pt0.1Cu0.9/Fe2O3 Synthesized by Radiolytic Process
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Enhanced CO Oxidation Catalysis of Pt0.1Cu0.9/Fe2O3 Synthesized by Radiolytic Process
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *