Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-21T02:18:50.288Z Has data issue: false hasContentIssue false

Energy Dissipation in the Mechanical-Diode Jump of a Nanoscale Contact

Published online by Cambridge University Press:  01 February 2011

Juan J. Martínez
Affiliation:
juanjillo_a@yahoo.com, University of Castilla-La Mancha, Laboratory of Nanotechnology, Plaza Manuel de Meca, 1, Almadén, E-13400, Spain
M. Teresa Cuberes
Affiliation:
teresa.cuberes@uclm.es, University of Castilla-La Mancha, Laboratory of Nanotechnology, Plaza Manuel de Meca 1, Almadén,, E-13400, Spain, 34902204100 ext. 6045
Get access

Abstract

In Ultrasonic Force Microscopy, the mechanical diode response refers to the quasistatic cantilever deflexion in the presence of surface out-of-plane ultrasonic vibration of sufficiently high amplitude. The effect has been described by introducing ultrasonic-amplitude-dependent tip-sample force-distance curves [Phys. Rev. 61 (2000) 13997]. Here, we demonstrate that the ultrasonic hysteresis phenomenon is qualitatively explained taking into account that for certain ultrasonic amplitudes, the modified tip-sample forces lead to two stable quasi-static equilibrium states, separated by an energy barrier. Experimental UFM data obtained on mica at ambient conditions are discussed in terms of ultrasonic-induced quasi-static equilibrium states, taking into account the role of the surface water layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rohrbeck, W. and Chilla, E. Phys. Status Solidi (a) 131 (1992) 69 Google Scholar
2. Kolosov, O. and Yamanaka, K., Jpn. J. Appl. Phys. Part 2 32 (1993) L1095 Google Scholar
3. Dinelli, F., Biswas, S. K. et al. Phys. Rev. 61 (2000) 13997 Google Scholar
4. Cuberes, M. T. in Fundamentals of Friction and Wear on the Nanometer Scale, Gnecco, E. and Meyer, E. (Eds), Springer (2007) 4971.Google Scholar
5. Inagaki, K., Matsuda, O., and Wright, O. B., Appl. Phys. Lett. 80 (2002), 2386.Google Scholar
6. Szoszkiewicz, R. et al. Appl. Surf. Sci. 219 (2003) 54.Google Scholar
7. Szoszkiewicz, R. et al. , J. of Chem. Phys. 122 (2005) 134706.Google Scholar
8. Xu, Dewei et al. , J. Colloid Interface Sci. 315 (2007) 772.Google Scholar
9. Shi, Xinghua and Zhao, Ya-Pu, J. Adhesion Sci. Technol., 18 (1) (2004) 55 Google Scholar
10. Sahagún, et al. Phys. Rev. Lett. 92 (2007) 176106.Google Scholar
11. Farshchi-Tabrizi, Mahdi et al. J. of Adhesion Sci. Technol. 22 (2008) 181.Google Scholar