Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-h2zp4 Total loading time: 0.173 Render date: 2021-09-23T03:51:15.638Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate

Published online by Cambridge University Press:  21 February 2012

Celal Yelgel
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, U.K.
Gyaneshwar P. Srivastava
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, U.K.
Get access

Abstract

The equilibrium geometry and electronic structure of graphene deposited on a multilayer hexagonal boron nitride (h-BN) substrate has been investigated using the density functional and pseudopotential theories. We found that the energy band gap for the interface between a monolayer graphene (MLG) and a monolayer BN (MLBN) lies between 47 and 62 meV, depending on the relative orientations of the layers. In the most energetically stable configuration the binding energy is found to be approximately 40 meV per C atom. Slightly away from the Dirac point, the dispersion curve is linear, with the electron speed almost identical to that for isolated graphene. The dispersion relation becomes reasonably quadratic for the interface between MLG and 4-layer-BN, with a relative effective mass of 0.0047. While the MLG/MLBN superlattice is metallic, the thinnest armchair nanoribbon of MLG/MLBN interface is semiconducting with a gap of 1.84 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., and Novoselov, K. S., Science 323, 610 (2009).CrossRefGoogle Scholar
2. Zhou, S. Y., Gweon, G. H., Fedorov, A. V., First, P. N., De Heer, W. A., Lee, D. H., Guinea, F., Castro Neto, A. H., and Lanzara, A., Nature Mater. 6, 770 (2007).CrossRefGoogle Scholar
3. Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J., and van den Brink, J., Phys. Rev. B 76, 073103 (2007).CrossRefGoogle Scholar
4. Slawinska, J., Zasada, I., and Klusek, Z., Phys. Rev. B 81, 155433 (2010).CrossRefGoogle Scholar
5. Fan, Y., Zhao, M., Wang, Z., Zhang, X., and Zhang, H., Appl. Phys. Lett. 98, 083103 (2011).CrossRefGoogle Scholar
6. Berashevich, J. and Chakraborty, T., Phys. Rev. B 80, 033404 (2009).CrossRefGoogle Scholar
7. Han, W. Q., Wu, L., Zhu, Y., Watanabe, K., and Taniguchi, T., Appl. Phys. Lett. 93, 223103 (2008).CrossRefGoogle Scholar
8. Alem, N., Erni, R., Kisielowski, C., Rossell, M. D., Gannett, W., and Zettl, A., Phys. Rev. B 80, 155425 (2009).CrossRefGoogle Scholar
9. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nat. Nanotech. 5, 722 (2010).CrossRefGoogle Scholar
10. Dean, C. R., Young, A. F., Cadden-Zimansky, P., Wang, L., Ren, H., Watanabe, K., Taniguchi, T., Kim, P., Hone, J., and Shepard, K. L., Nature Physics 7, 693 (2011).CrossRefGoogle Scholar
11. Usachov, D., Adamchuk, V. K., Haberer, D., Gruneis, A., Sachdev, H., Preobrajenski, A. B., Laubschat, C., and Vyalikh, D. V., Phys. Rev. B 82, 075415 (2010).CrossRefGoogle Scholar
12. Bjelkevig, C., Mi, Z., Xiao, J., Dowben, P. A., Wang, L., Mei, W. N., and Kelber, J. A., J. Phys.: Condens. Matter 22, 302002 (2010)Google Scholar
13. Das Sarma, S. and Hwang, E. H., Phys. Rev. B 83, 121405 (2011).CrossRefGoogle Scholar
14. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
15. Gonze, X., Stumpf, R., and Scheffler, M., Phys. Rev. B 44, 8503 (1991).CrossRefGoogle Scholar
16. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5189 (1976).CrossRefGoogle Scholar
17. Zhang, Y., Tang, T., Girit, C., Hao, Z., Martin, M. C., Zett, A., Crommie, M. F., Shen, Y. R., and Wang, F., Nature 459, 820 (2009).CrossRefGoogle Scholar
18. Castro, E. V., Novoselov, K. S., Morozov, S. V., Peres, N. M. R., Lopes dos Santos, J. M. B., Nilsson, J., Guinea, F., Geim, A. K., and Castro Neto, A. H., J. Phys.: Condens. Matter 22, 175503 (2010).Google Scholar
19. Yelgel, C. and Srivastava, G. P., Appl. Surf. Sci. 258 (2012) (in press).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Energy Band Gap Modification of Graphene Deposited on a Multilayer Hexagonal Boron Nitride Substrate
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *