Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T00:34:07.276Z Has data issue: false hasContentIssue false

Endor Spectroscopy on Deep Level Defects in Gaas

Published online by Cambridge University Press:  26 February 2011

J.-M. Spaeth
Affiliation:
University of Paderborn, FB 6, Warburger Str. 100 A, D-4790 Paderborn, Federal Republic of Germany
A. Gorger
Affiliation:
University of Paderborn, FB 6, Warburger Str. 100 A, D-4790 Paderborn, Federal Republic of Germany
D. M. Hofmann
Affiliation:
University of Paderborn, FB 6, Warburger Str. 100 A, D-4790 Paderborn, Federal Republic of Germany
B. K. Meyer
Affiliation:
University of Paderborn, FB 6, Warburger Str. 100 A, D-4790 Paderborn, Federal Republic of Germany
Get access

Abstract

With optically detected electron spin resonance (ODESR) and electron nuclear double resonance (ODENDOR) the following deep level defects in s.i. LEC-grown GaAs were investigated: EL2 defects in undoped GaAs and VGa2+ and VGa3+ defects in V-doped GaAs. This paper summarizes the major results: (i) the double donor defect EL2 in an (AsGa-Asi+) pair defect, which is distributed rather homogeneously across an as-grown wafer. After inverted thermal conversion treatment it is destroyed, and 3 new paramagnetic defects appear. EL2 is recovered after annealing at ca. 800 °C, while the 3 new defects disappear. (ii) A new ESR spectrum due to VGa2+ was measured. It is shown for the first time for a 3dn impurity in semiconductors that VGa3+(3d3)is in a low spin state (S = 1/2) in accordance with recent theoretical predictions. A deep level defect at Ev + (0.2–0.4) eV is discovered, which is probably the defect needed for explaining the s.i. properties of V-doped GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Holmes, D.E., Elliott, K.R., Chen, R.T. and Kirkpatrik, C.G., in Semi-Insulating III-V Materials, edited by Makram-Ebeid, S. and Tuck, B. (Shiva, Nentwich, 1982), p. 19Google Scholar
[2]Tsukada, N., Kikuta, T. and Ishida, K., Jap. J. AppI. Phys. 24, L689 (1985)Google Scholar
[3]Hofmann, K.M., Meyer, B.K., Lohse, F. and Spaeth, J.-M., Phys. Rev. Lett. 53, 1187 (1984)Google Scholar
[4]Meyer, B.K., Hofmann, D.M., Niklas, J.R. and Spaeth, J.-M., Phys. Rev. B 36, 1332 (1987)Google Scholar
[5]Spaeth, J.-M., Hofmann, D.M., Heinemann, M. and Meyer, B.K., Proc. of the 14th Int. Symp. on GaAs and Related Compounds, Heraklion, Crete, Greece, 1987Google Scholar
[6]von Bardeleben, H.J., Stievenard, D. and Bourgoin, J.C., Appl. Phys. Lett. 47, 970 (1985)Google Scholar
[7]Levinson, M., Proc. of 14th Int. Symp. on GaAs and Related Compounds, Heraklion, Crete, Greece, 1987Google Scholar
[8]Kaufmann, U., Ennen, H., Schneider, J., Wörner, R., Weber, J. and Köhl, F., Phys. Rev. B 25, 5598 (1982)Google Scholar
[9]Vasson, A.M., Vasson, A., Bates, C.A., Labadz, A.F., J. Phys. C: Solid State Phys. 17, L837841 (1984)Google Scholar
[10]Ulrici, W., Friedland, K., Eaves, L. and Halliday, D.P., phys. stat. sol. (b) 131, 719 (1985)Google Scholar
[11]Hennel, A.M., Brandt, C.D., Ko, K.Y., Lagowski, J. and Gatos, H.C., J. Appl. Phys. 62, 163 (1987)Google Scholar
[12]Clerjaud, B., J. Phys. C: Solid State Phys. 18, 3615 (1985)Google Scholar
[13]Fazzio, A., Caldas, M.J. and Zunger, A., Phys. Rev. B 30, 3430 (1984)Google Scholar
[14]Katayama-Yoshida, H. and Zunger, A., Phys. Rev. B 33, 2961 (1986)Google Scholar
[15]Hage, J., Niklas, J.R. and Spaeth, J.-M., J. Electron. Mater. a14, 1051 (1984)Google Scholar
[16]Meyer, B.K., Spaeth, J.-M. and Scheffler, M., Phys. Rev. Lett. 52, 851 (1984)Google Scholar
[17]Hofmann, D.M., Dissertation Paderborn, 1987Google Scholar
[18]Hofmann, D.M., Meyer, B.K. and Spaeth, J.-M., to be publishedGoogle Scholar
[19]Ahlers, F.J., Lohse, F., Spaeth, J.-M. and Mollenauer, L.M., Phys. Rev. B 28, 1249 (1983)Google Scholar
[20]von Engelen, P., Phys. Rev. B 22, 3144 (1980)Google Scholar
[21]Meyer, B.K., Hofmann, D.M. and Spaeth, J.-M., J. Phys. C: Solid State Phys. 20, 2445 (1987)Google Scholar
[22]Windscheif, J., Baeumler, M. and Kaufmann, U., Appl. Phys. Lett. 46, 661 (1985)Google Scholar
[23]Dobrilla, P., Blakemore, J.S., McCarmont, A.J., Gleason, R.K. and Koyama, R.Y., Appl. Phys. Lett. 47, 602 (1985)Google Scholar
[24]Martin, G.M., Appl. Phys. Lett. 39, 747 (1981)Google Scholar
[25]Wilkening, W., Kaufmann, U. and Baeumler, M., private communication, 1987Google Scholar
[26]Walukiewicz, W., Bourret, E.D., Yan, W.F., Murray, R.E., Haller, E.E. and Bliss, D.F., Proc. Int. Symp. Defects Recognition and Image Processing (Shiva Publ.), in pressGoogle Scholar
[27]Wagner, J., Seelewind, A. and Kaufmann, U., Appl. Phys. Lett. 48, 1054 (1986)Google Scholar
[28]Lagowski, J., Gatos, H.C., Kang, C.H., Skowronski, M., Ko, K.Y. and Lin, D.G., Appl. Phys. Lett. 49, 892 (1986)Google Scholar
[29]Mollenauer, L.F. and Pan, P., Phys. Rev. B 6, 772 (1972)Google Scholar
[30]Gbrger, A., Hennel, A.M., Meyer, B.K. and Spaeth, J.-M., to be published.Google Scholar