Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-21T02:19:41.431Z Has data issue: false hasContentIssue false

Electrospray Deposition of Diamond Nanoparticle Nucleation Layers for Subsequent CVD Diamond Growth

Published online by Cambridge University Press:  31 January 2011

Oliver J.L. Fox
Affiliation:
oliver.fox@bristol.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
James O.P. Holloway
Affiliation:
jh4454@bristol.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Gareth M. Fuge
Affiliation:
gareth.fuge@bristol.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Paul W. May
Affiliation:
Paul.May@bristol.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Mike N.R. Ashfold
Affiliation:
Mike.Ashfold@bristol.ac.uk, University of Bristol, School of Chemistry, Bristol, United Kingdom
Get access

Abstract

Nucleation is the rate-determining step in the initial stages of most chemical vapour deposition processes. In order to achieve uniform deposition of diamond thin films it is necessary to seed non-diamond substrates. Here we discuss a simple electrospray deposition technique for application of 5 nm diamond seed particles onto substrates of various sizes. The influence of selected parameters, such as experimental spatial arrangement and colloidal properties, are analysed in optimizing the method by optical and electron microscopy, both before and after nanocrystalline diamond deposition on the seed layer. The advantages and limitations of the electrospray method are highlighted in relation to other commonly exploited nucleation techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Das, D., Singh, R. N., International Materials Reviews 52, 29 (2007) and references therein.Google Scholar
2 Lee, S-T., Lin, Z., Jiang, X., Materials Science and Engineering 25, 123 (1999).Google Scholar
3 Liu, Y.K., Tso, P.L., Lin, I.N., Tzeng, Y., Chen, Y.C., Diamond Rel. Mater. 15, 234 (2006).Google Scholar
4 Morrish, A. A., Pehrsson, P. E., Appl. Phys. Lett. 59, 417 (1991).Google Scholar
5 Demuynck, L., Arnault, J. C., Speisser, C., Polini, R., LeNormand, F., Diamond Relat. Mater. 6, 235 (1997).Google Scholar
6 Chiang, M. J., Hon, M. H., Diamond Relat. Mater. 10, 1470 (2001).Google Scholar
7 Irwin, M. D., Pantano, C. G., Gluche, P., Kohn, E., Appl. Phys. Lett. 71, 716 (1997).Google Scholar
8 Yang, G. S., Aslam, M., Appl. Phys. Lett. 66, 311 (1995).Google Scholar
9 Tang, Y., Aslam, D. M., J. Vac. Sci. Technol. B 23, 1088 (2005).Google Scholar
10 Yang, G. S., Aslam, M., Kuo, K. P., Reinhard, D. K., Asmussen, J., J. Vac. Sci. Technol. B 13, 1030 (1995).Google Scholar
11 Matsushima, Y., Nemeto, Y., Yamazaki, T., Maeda, K., Suzuki, T., Sensors and Actuators B 96, 133 (2003).Google Scholar
12 Malshe, A. P., Beera, R. A., Khanolkar, A. A., Brown, W. D., and Naseem, H. A., Diamond Relat. Mater. 6, 430 (1997).Google Scholar
13 Malshe, A. P., Khanolkar, A. A., Brown, W. D., Yedave, S. N., Naseem, H. A., Haque, M. S. Proceedings Of The Fifth International Symposium On Diamond Materials, Electrochemical Society Inc. 97, 399 (1998).Google Scholar
14 Donnet, J. B., Lemoigne, C., Wang, T. K., Peng, C. M., Samirant, M., Eckhardt, A., Bull. Soc. Chem. Fr. 134, 875 (1997).Google Scholar
15 Shenderova, O. A., Zhirnov, V. V., Brenner, D. W., CRC Crit. Rev. Solid State Mater. Sci. 27, 227 (2002).Google Scholar
16 Ozawa, M., Inaguma, M., Takahashi, M., Kataoka, F., Krüger, A., Osawa, E., Adv. Mater. 19, 1201 (2007).Google Scholar