Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T10:10:53.950Z Has data issue: false hasContentIssue false

Electronic Transport Properties of Hg1-xFexSe

Published online by Cambridge University Press:  26 February 2011

F. Pool
Affiliation:
Department of Physics, Purdue University, W. Lafayette, IN 47907, USA
J. Kossut
Affiliation:
Department of Physics, Purdue University, W. Lafayette, IN 47907, USA
U. Debska
Affiliation:
Department of Physics, Purdue University, W. Lafayette, IN 47907, USA
R. Reifenberger
Affiliation:
Department of Physics, Purdue University, W. Lafayette, IN 47907, USA
J. K. Furdyna
Affiliation:
Department of Physics, Purdue University, W. Lafayette, IN 47907, USA
Get access

Abstract

The electrical resistivity, electron concentration, and mobility of Hg1-xFexSe are reported for 4.2K < T < 300K and for 0.0001 < x < 0.12. The data are interpreted within an electronic band structure model that assumes the existence of resonant donors (due to the presence of Fe ions) whose ground state energy coincides with the conduction band continuum. The electron concentration data enable determination of the value of the donor energy as a function of the temperature and the crystal composition. The low temperature electron mobility for ∼ 0.0003 ≤ x ≤ 0.01 is considerably higher than expected and indicates a reduction of the charged impurity scattering effects at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Furdyna, J.K., J. Appl. Phys., 53, 7637 (1982).Google Scholar
2. Mycielski, J., Prog. Cryst. Growth Char., 10, 101 (1985).Google Scholar
3. Furdyna, J.K., J. Vac. Sci. Technol., A4, 2002 (1986).CrossRefGoogle Scholar
4. Vaziri, M., Debska, U. and Reifenberger, R., Appl. Phys. Lett., 47 407 (1985).CrossRefGoogle Scholar
5. Jurewicz, J., Pilecka, I., Dybko, K., Dobrowolski, W., Mycielski, A. and Wrobel, J., Acta Phys. Polon., A69, (1986).Google Scholar
6. Mycielski, A., Dzwonkowski, P., Kowalski, B., Orlowski, B., Dobrowolska, M., Arciszewska, M., Dobrowolski, W. and Baranowski, J.M., J. Phys. C, 19, 3605 (1986).Google Scholar
7. Wall, A., Caprile, C., Franciosi, A., Vaziri, M., Reifenberger, R. and Furdyna, J.K., J. Vac. Sci. Technol., A4, 2010 (1986).Google Scholar
8. Vaziri, M. and Reifenberger, R., Phys. Rev., B32, 3291 (1985).Google Scholar
9. Vaziri, M. and Reifenberger, R., Phys. Rev., B33, 5585 (1986).Google Scholar
10. Serre, H., Bastard, G., Rigaux, C., Mycielski, J. and Furdyna, J.K., Proc. Int. Conf. Phys. of Narrow Gap Semicond., Linz 1981, Lecture Notes in Physics, 152, (Springer Verlag, Berlin 1982) p. 321.Google Scholar
11. Mycielski, J., Acta Phys. Polon, A69, (1986).Google Scholar
12. Mycielski, J., Solid State Commun. (in press).Google Scholar
13. Pool, F., Kossut, J., Debska, U., Reifenberger, R., submitted to Phys. Rev. B.Google Scholar
14. Kane, E.O., J. Phys. Chem. Solids, 1, 249 (1957).Google Scholar
15. Mycielski, A., Kossut, J., Dobrowolska, M. and Dobrowolski, W., J. Phys. C, 15, 3293 (1982).Google Scholar
16. Dobrowolska, M., Dobrowolski, W. and Mycielski, A., Solid State Commun. 34, 441 (1980).Google Scholar
17. Szymanska, W. and Dietl, T., J. Phys. Chem. Solids, 39, 1025 (1978).Google Scholar
18. Dietl, T. and Szymanska, W., J. Phys. Chem. Solids, 39, 1041 (1978).Google Scholar
19. Iwanowski, R.J., Dietl, T. and Szymanska, W., J. Phys. Chem. Solids, 39, 1059 (1978).Google Scholar
20. Miller, M.M. and Reifenberger, R., Bull. Amer. Phys. Soc., 31, 254 (1986) and to be published.Google Scholar