Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T00:44:38.569Z Has data issue: false hasContentIssue false

Electronic Structure Calculations of Pure and Oxidized Copper Clusters Using Jellium and MO - LCAO Models

Published online by Cambridge University Press:  15 February 2011

Henrik Gronbeck
Affiliation:
Department of Physics, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
Mats Andersson
Affiliation:
Department of Physics, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
Arne Rosen
Affiliation:
Department of Physics, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
Get access

Abstract

A self consistent jellium approach to the chemisorption of molecular oxygen on copper clusters is investigated and compared with local density MO - LCAO calculations. The jellium model is found to be well suited for chemisorption studies and the results explain the main trends in the measured chemisorption properties of O2 on copper clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. ISSPIC 6 Proceedings, Z. Phys. D 26; ISSPIC 5 Proceedings, Z. Phys. D 19,20Google Scholar
2. Knight, W.D, Cleminger, K., Heer, W. de, Saunders, W.A., Chou, M.Y. and Cohen, M.L., Phys. Rev. Lett. 52, 2141 (1984)Google Scholar
3. Heer, W. de, Rev. Mod. Phys. 65, 611 (1993).Google Scholar
4. Ekardt, W., Phys. Rev. B 29, 1558 (1984).Google Scholar
5. Brack, M., Rev. Mod. Phys. 65, 677 (1993).Google Scholar
6. Cleminger, K., Phys. Rev. B 32, 1359 (1985).Google Scholar
7. Ekardt, W. and Penzar, Z., Phys. Rev. B 38, 4273 (1988).Google Scholar
8. Lauritsch, G., Reinhard, P.G., Meyer, J. and Brack, M., Phys. Lett. A 160, 179 (1991).Google Scholar
9. Kaldor, A., Cox, D.M. and Zakin, M.R., Adv. in Chem. Phys. 70, 211 (1988).Google Scholar
10. Winter, B.J., Parks, E.K. and Riley, S.J., J. Chem. Phys. 94, 8618 (1991).Google Scholar
11. Andersson, M., Persson, J.L. and Rosön, A., Nanostr. Mater. 3, 337 (1993).Google Scholar
12. Grönbeck, H. and Rosón, A., Comp. Matr. Sci. accepted.Google Scholar
13. Penzar, Z. and Ekardt, W., Z. Phys. D 17, 69 (1990).Google Scholar
14. Hohenberg, P., Phys. Rev. 136, 864 (1964).Google Scholar
15. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
16. Gunnarsson, O. and Lunqvist, B.I., Phys. Rev. B 13, 4274 (1976).Google Scholar
17. Boerrigter, P.M., Velde, G. Te and Bearendsi, E.J., Int. J. Quant. Chem. 33, 37 (1988).Google Scholar
18. Delley, B. and Ellis, D.E., J. Chem. Phys. 76, 1949 (1982).Google Scholar
19. Nygren, M.A. and Siegbahn, P., J. Chem. Phys. 96, 7579 (1992).Google Scholar