Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T19:06:41.606Z Has data issue: false hasContentIssue false

Electronic Structure and Gate Capacitance-Voltage Characteristics of MBE Silicon δ-FETs

Published online by Cambridge University Press:  03 September 2012

J. E. Manzoli
Affiliation:
Ciência e Engenharia de Materiais - Universidade de São Paulo (USP), CX 369, ZIP-13560-970, São Carlos, SP, Brazil, manzoli@ifqsc.sc.usp.br
O. Hipólito
Affiliation:
Universidade de Mogi das Cruzes, Departamento do Nficleo de Pesquisas Tecnológicas, Mogi das Cruzes, SP, Brazil
Get access

Abstract

New implementations in MBE growth techniques allow high accuracy in δ-doping profiles in Silicon crystals. In this work we present a self-consistent numerical calculations of the electronic structure of δ-FETs, field effect transistors where electric transport channel is a quasi-two-dimensional plan of Antimonide doping in a Silicon crystal. We made the calculations to the heavy and light electrons at 77 and 300K varying the gate voltage in devices with one to three coupled deltas. We obtain the effective potential, the sub-bands and respective electronic densities, basic calculations to point at optimization of the device. We made considerations on theirs DC - capacitances and free electron density spreadings to achieve the gate-voltage best performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fu, Y. and Willander, M., J. Appl. Phys. 78 (5), 3504 (1995).Google Scholar
[2] Cams, T.K., Zheng, X., Wang, K.L., Wu, S.L. and Wang, S.J., J. Vac. Sci. Technol. B 12 (2), 1203 (1994).Google Scholar
[3] Krüger, D., Gaworzewski, P., Kurps, R. and Zeindl, P., J. Vac. Sci. Technol. B 14 (1), 341 (1996).Google Scholar
[4] Radamson, H.H., Sardela, M.R. Jr., Nur, O., Willander, M., Sernelius, B.E., Ni, W.X. and Hansson, V., Appl. Phys. Lett. 64 (14), 1842 (1994).Google Scholar
[5] Vinter, B., Appl. Phys. Lett. 44 (3), 307 (1984).Google Scholar
[6] DasGupta, A. and DasGupta, N., Solid-State Electr. 37 (7), 1377 (1994).Google Scholar
[7] Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, inc., San Diego, 1991), pp. 141154.Google Scholar
[8] Degani, M.H., J. Appl. Phys. 70 (8), 4362 (1991).Google Scholar
[9] Degani, M.H., Appl. Phys. Lett. 59 (1), 57 (1991).Google Scholar
[10] Hedin, L. and Lundqvist, B.I., J.Phys. C: Solid St. Phys. 4 (14), 2064 (1971).Google Scholar
[11] Stern, F. and Howard, W.E., Phys. Rev. 163 (3), 816 (1967).Google Scholar
[12] Tan, I-H., Snider, G.L., Chang, L.D. and Hu, E.L., J.Appl.Phys. 68 (8), 4071 (1990).Google Scholar
[13] Sze, S.M., Physics of Semiconductor Devices (Wiley-Interscience, 2nd ed., Singapore, 1981), pp. 46.Google Scholar