Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-07T00:52:47.786Z Has data issue: false hasContentIssue false

Electronic Excitation-Induced Surface Chemistry and Electron-Beam-Assisted Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

F. Bozso
Affiliation:
IBM Research Division, T. J. Watson Research Center P.0. Box 218, Yorktown Heights, N.Y. 10598
Ph. Avouris
Affiliation:
IBM Research Division, T. J. Watson Research Center P.0. Box 218, Yorktown Heights, N.Y. 10598
Get access

Abstract

Selective area deposition of thin films and surface structures with precise control over their composition is possible in UHV by using low energy electron beams to induce electronic excitations in adsorbed molecular layers. Upon electron impact, adsorbed/co-adsorbed molecules decompose into reactive species, resulting in film growth. The composition of the film reflects that of the adsorbed molecular layer, which at cryogenic temperatures can sensitively be controlled by the partial pressure of the reactant gases. We present results of detailed studies of adsorption, thermal and electron-beam-induced dissociation of disilane and ammonia on silicon. We show that by proper choice of temperature, gas phase composition and electron beam, amorphous silicon, silicon nitride, oxide, silicon oxinitride films can be grown with nearly monolayer thickness resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehrlich, D. J., Highashi, G. S. and Oprisco, M. M., eds., Laser and Particle Beam Chemical Processing for Microelectronics, Mater. Res. Soc. Symp. Proc. 101, Pittsburgh, PA 1988.Google Scholar
2. Yyamamura, Y., Fujisawa, T. and Namba, S., eds., Nanometer Structure electronics, OHM-North Holland, Tokyo 1985.Google Scholar
3. Avouris, Ph. and Walkup, R. E., Ann. Rev. Phys. Chem., 40, 173 (1989).Google Scholar
4. Bozso, F. and PAvouris, h., Phys. Rev. B 38, 3937, (1988).Google Scholar
5. Bozso, F. and Avouris, Ph., Phys. Rev. B 38, 3943, (1988).Google Scholar
6. Dresser, M. J., Taylor, P. A., Wallace, R. M., Choyke, W. J. and Yates, J. T., Surface Sci. 218, 75 (1989).Google Scholar
7. Koehler, B. G., Coon, P. A. and George, S. M., J. Vac. Sci. Technol B 7, 1303 (1989).Google Scholar
8. Koehler, B. G., Mak, C. H. and George, S. M., Surface Sci. 221, 565 (1989).Google Scholar
9. Imbihl, R., Demuth, J. E., Gates, S. M. and Scott, B. A., Phys. Rev. B 39, 5222 (1989).Google Scholar
10. Uram, K. and Jansson, U., Surface Sci., submitted.Google Scholar
11. Avouris, Ph. and Bozso, F., J. Chem. Phys., submitted.Google Scholar
12. Traum, M. M., Talk, N. N., Tulli, J. C. and Madey, T., eds., Desorption Induced by Electronic Transitions-DIET I, Springer Verlag, Berlin 1983.Google Scholar
13. Brenig, W. and Menzel, D., eds., Desorption Induced by Electronic Transitions-DIET II, Springer Verlag, Berlin 1985.Google Scholar
14. Stuhlen, R. H. and Knotek, M. L., eds., Desorption Induced by Electronic Transitions-DIET III, Springer Verlag, Berlin 1988.Google Scholar
15. Menzel, D. and Gomer, R., J. Chem. Phys. 41, 3311 (1964).Google Scholar
16. Redhead, P. A., Can. J. Phys. 42, 886 (1964).Google Scholar
17. Smirnov, B. M., Negative Ions, McGraw-Hill, New York 1982.Google Scholar
18. Bozso, F. and Avouris, Ph., Appl. Phys. Lett. 53, 1095 (1988).Google Scholar
19. Argile, C. and Rhead, G. E., Surface Sci. Rep. 10, 277 (1989).Google Scholar
20. Lee, K. L. and Hatzakis, M., J. Vac. Sci. Technol. B 7, 1941 (1989).Google Scholar