Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T08:17:47.384Z Has data issue: false hasContentIssue false

The electronic and magnetic structure of Fe-based bulk amorphous metals: An ab-initio approach

Published online by Cambridge University Press:  11 February 2011

Yang Wang
Affiliation:
Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA 15213
Mike Widom
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Don Nicholson
Affiliation:
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831
Marek Mihalkovic
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Siddartha Naidu
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

We applied the locally self-consistent multiple scattering (LSMS) method to the study Fe-based bulk amorphous metals. The LSMS method is an order-N approach to the electronic structure calculation for solid state materials based on density functional theory and local density approximation. Using LSMS method, we performed electronic structure calculations for the supercell samples generated by ab-initio molecular dynamics simulation. The equilibrium atomic volume and the bulk modulus are calculated based on the energy versus volume curve. The magnetic moment distribution in the samples is determined for both collinear and noncollinear cases. A comparison with the experimental results is also made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klement, W., Willens, R.H., Duwez, P., Nature 187, 869 (1960).Google Scholar
2. See articles in Amorphous Metallic Alloys, edited by Luborsky, F.E., (Butterworths, London, 1983).Google Scholar
3. Cahn, R.W., in Glasses and Amorphous Materials, edited by Zarzycki, J., (Mater. Sci. Tech. 9, VCH Press, Weinheim, 1991) pp. 493548.Google Scholar
4. Kui, H.W., Greer, A.L., and Turnbull, , Appl. Phys. Lett. 45, 615 (1984).Google Scholar
5. Drehman, A.J. and Greer, A.L., Acta. Metall. 32, 323 (1984).Google Scholar
6. Inoue, A., Ohtera, K., Kita, K., Masumoto, T., Jpn. J. Appl. Phys. 27, L2248 (1988).Google Scholar
7. Inoue, A., Zhang, T., Masumoto, T., Mater. Trans. JIM 30, 965 (1989).Google Scholar
8. Inoue, A., Zhang, T., Masumoto, T., Mater. Trans. JIM 31, 148 (1990).Google Scholar
9. Inoue, A., Mater. Sci. Eng. A304–306, 1 (2001).Google Scholar
10. Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).Google Scholar
11. Hays, C.C., Kim, C. P., and Johnson, W.L., Appl. Phys. Lett. 75, 1089 (1999).Google Scholar
12. Hays, C.C., Schroers, J., Geyer, U., Bossuyt, S., Stein, N., and Johnson, W.L., Mater. Sci. Forum 343, 103 (2000).Google Scholar
13. Poon, S.J., Shiflet, G.J., Guo, F.Q., and Ponnambalam, V. (to be published).Google Scholar
15. Widom, M., Mihalkovic, M., Naidu, S., Nicholson, D.M.C., and Wang, Y. (to be published in MRS proceeding).Google Scholar
16. Wang, Y., Stocks, G.M., Shelton, W.A., Nicholson, D.M.C., Temmerman, W.M., and Szotek, Z., Phys. Rev. Lett. 75, 2867 (1995).Google Scholar
17. Kohn, W. and Sham, L.J., Phys. Rev. A 140, 1133 (1965).Google Scholar
18. Hohenberg, P.C. and Kohn, W., Phys. Rev. B 136, 864 (1964).Google Scholar
19. von Barth, U. and Hedin, L., J. Phys. C. 5, 1629 (1972).Google Scholar
20. Stocks, G.M., Ujfalussy, B., Wang, X., Nicholson, D.M.C., Shelton, W.A., Wang, Y., Canning, A., and Gyorffy, B.L., Phil. Mag. B, 78, 665 (1998).Google Scholar
21. Poon, J., private communications.Google Scholar