Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-07T09:49:54.714Z Has data issue: false hasContentIssue false

Electron Transfer at the n-InP | Poly(Pyrrole) Interface

Published online by Cambridge University Press:  10 February 2011

Mark C. Lonergan
Affiliation:
Department of Chemistry and The Materials Science Institute, University of Oregon, Eugene, OR 97403-1253
Christopher T. Cooney
Affiliation:
Department of Chemistry and The Materials Science Institute, University of Oregon, Eugene, OR 97403-1253
James A. Myers
Affiliation:
Department of Chemistry and The Materials Science Institute, University of Oregon, Eugene, OR 97403-1253
Get access

Abstract

Measurements of the barrier height by capacitance-voltage techniques and of the equilibrium exchange current density by current-voltage techniques are performed on the rectifying interface between n-InP and poly(pyrrole) (chemically polymerized and characterized by an electrochemical potential of ≈0.2V vs. SCE). The current-voltage data yielded a quality factor of 1.2±0.1 and an equilibrium exchange current density of (1.2±0.6) x 10−9. A cm−2. The capacitance-voltage data yielded a barrier height of 0.73 ± 0.02 V and measured dopant densities within 15% of the expected value. These data, taken together, are inconsistent with thermionic emission theories developed to describe inorganic semiconductor I metal interfaces and often applied to inorganic semiconductor I doped conjugated polymer interfaces. In particular, the ratio of the rate constant for majority carrier electron capture (surface recombination velocity) at the n-InP | poly(pyrrole) interface to that at n-InP | metal interfaces is found to be (6 ± 5) × 10−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ozaki, M., et al., Appl. Phys. Lett. 35, 8385 (1979).Google Scholar
2. Inganas, O., Skotheim, T., Lundstrom, I., Phys. Scripta 25, 863867 (1982).Google Scholar
3. Inganas, O., Skotheim, T., Lundstrom, I., J. Appl. Phys. 54, 3636 (1983).Google Scholar
4. Frank, A. J., Glenis, S., Nelson, A. J., J. Phys. Chem. 93, 38183825 (1989).Google Scholar
5. Watanabe, A., Murakami, S., Mori, K., Kashiwaba, Y., Macromolecules 22, 42314235 (1989).Google Scholar
6. Renkuan, Y., Hong, Y., Zheng, Z., Youdou, Z., Synth. Metals 41–43 (1991).Google Scholar
7. Turut, A., Koleli, F., J. Appl. Phys. 72, 818819 (1992).Google Scholar
8. Sailor, M. J., Klavetter, F. L., Grubbs, R. H., Lewis, N. S., Nature 346, 155157 (1990).Google Scholar
9. Lonergan, M. C., Science 278, 2103.Google Scholar
10. Freund, M. S., Karp, C., Lewis, N. S., Current Separations 13, 6669 (1994).Google Scholar
11. Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
12. Lewis, N. S., Annu. Rev. Phys. Chem. 42, 543580 (1991).Google Scholar
13. Bethe, H. A., “MIT Radiation Lab. Rep” (1942).Google Scholar
14. Rhoderick, E. H., Williams, R. H., Metal-Semiconductor Contacts. Hammond, P., Grimsdale, R. L., Eds., Monographs in Electrical and Electronic Engineering (Oxford University Press, Oxford, ed. 2nd, 1988), vol.19.Google Scholar
15. Kumar, A., Wilisch, W. C. A., Lewis, N. S., Crit. Rev. Solid State Mater. 18, 327353 (1993).Google Scholar
16. Card, H. C., Rhoderick, E. H., J. Phys. D 4, 1589 (1971).Google Scholar
17. Eftekhari, G., Tuck, B., de Cogan, D., J. Phys. D 16, 1099 (1983).Google Scholar
18. Lee, Y. S., Anerson, W. A., J. Appl. Phys. 65, 4051 (1989).Google Scholar