Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T20:23:33.535Z Has data issue: false hasContentIssue false

Electron Spin Resonance Studies of Silicon Dioxide Films on Silicon in Integrated Circuits Using Spin Dependent Recombination

Published online by Cambridge University Press:  25 February 2011

M. A. Jupina
Affiliation:
Pennsylvania State University, University Park, PA 16802
P. M. Lenahan
Affiliation:
Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The technique of spin dependent recombination (SDR) allows the electron spin resonance (ESR) observation of electrically-active point defects in a single metal-oxide-semiconductor field-effect transistor (MOSFET) with surface areas of only 10-4 cm2 and Si/Si02 interface point defect densities of ∼1011/cm2. With SDR's enhanced sensitivity, devices with different processing details are explored. Differences in the E' spectra for variations in the oxidation processing are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lenahan, P. M. and Dressendorfer, P. V., Appl. Phys. Lett. 41, 542 (1982).Google Scholar
2. Lenahan, P. M. and Dressendorfer, P. V., Appl. Phys. Lett. 44, 96 (1984).Google Scholar
3. Lenahan, P. M. and Dressendorfer, P. V., J. Appl. Phys. 55, 3495 (1984).Google Scholar
4. Lepine, D. J., Phys. Rev. B6, 436 (1972).Google Scholar
5. Solomon, I., Solid-State Comm. 20, 215 (1976).Google Scholar
6. Chen, M. C. and Lang, D. V., Phys. Rev. Lett. 51, 427 (1983).Google Scholar
7. Henderson, B., Appl. Phys. Lett. 44, 228 (1984).Google Scholar
8. Vranch, R. L., Henderson, B., Pepper, M., Appl. Phys. Lett. 52, 1161 (1988).Google Scholar
9. White, R. M. and Gouyet, J. F., Phys. Rev. B16, 3596 (1977).Google Scholar
10. Livov, V. S., Tretyak, O. V., and Kolomiets, J. A., Sov. Phys. Semicond. 11, 661 (1977).Google Scholar
11. Kaplan, D., Solomon, I., Mott, N. F., J. Phys. Lett. (Paris) 32, L51 (1978).Google Scholar
12. Grove, A. S. and Fitzgerald, D. J., Solid-State Electron. 2, 783 (1966).Google Scholar
13. Fitzgerald, D. J. and Grove, A. S., Surface Sci. 2, 347 (1968).Google Scholar
14. Zaininger, K. H., IEEE Trans. Nucl. Sci. NS–13, 237 (1966).Google Scholar
15. Szedon, J. R. and Sandor, J. E., Appl. Phys. Lett. 6, 181 (1965).Google Scholar
16. Powell, R. J. and Derbenwick, G. F., IEEE Trans. Nucl. Sci. NS–18, 99 (1971).Google Scholar
17. Winokur, P. S. and Sokoloski, M. M., Appl. Phys. Lett 28, 627 (1976).Google Scholar
18. McLean, F. B., IEEE Trans. Nucl. Sci. NS–27, 1651 (1980).Google Scholar
19. Kim, Y. Y. and Lenahan, P. M., J. Appl. Phys. 64, 3551 (1988).Google Scholar
20 Poindexter, E. H., Caplan, P. J., Deal, B. E., and Razouk, R. R., J. Appl. Phys. 52, 879 (1981).Google Scholar