Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T08:09:36.257Z Has data issue: false hasContentIssue false

Electron Cyclotron Resonance Plasma Chemical Vapour Deposition of Silicon Carbide Thin Films Using Ditertiary Butyl Selane

Published online by Cambridge University Press:  21 February 2011

Mohamed Boumerzoug
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
Marcel Boudreau
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
Peter Mascher
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
Paul E. Jessop
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
Get access

Abstract

Silicon carbide films were deposited by electron cyclotron resonance plasma chemical vapour deposition, using Ditertiary Butyl Silane (SiH2(C4H9)2), a non-corrosive organic compound, liquid at room temperature and stable in air, as precursor. Depositions were carried out in an Ar/H2 plasma at relatively low temperatures, below 400 °C. The influence of deposition parameters such as substrate temperature, gas flow rates, pressure, and microwave power, was systematically investigated and related to the Si:C ratios and the refractive index. The film composition was measured by Auger electron spectroscopy and the surface morphology was examined by scanning electron microscopy. The deposition rates and refractive indexes were extracted from the conventional ellipsometric functions, psi and delta. The results show that high quality silicon carbide of variable Si:C ratios and with very low levels of impurities are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, R. F., J. Vac. Sci. Technol. A, 11, 829 (1993).Google Scholar
2. Bécourt, N., Ponthenier, J. L., Papon, A. M., Janssaud, C., Physica B, 185, 79 (1993).Google Scholar
3. Paasche, S. M., Toyoma, T., Okamoto, H., Hamakawa, Y., IEEE Trans. Elect. Dev., 36, 2895 (1989).Google Scholar
4. Davis, R. F., Kelner, G., Shur, M., Palmour, J. W., Edmond, J. A., Proceed. IEEE, 79, 677 (1991)Google Scholar
5. Ohshita, Y., Mat. Res. Soc. Symp. Proc, 162, 433 (1989).Google Scholar
6. Chen, Y. L., Bentley, J., Wang, C., Lucovsky, G., Maher, D. M., Mat. Res. Soc. Symp. Proc. 297, 711 (1993).Google Scholar
7. Futagi, T., Katsuno, M., Ontani, N., Ohta, Y., Mimura, H., Kawamura, K., Appl. Phys. Lett., 58, 2948 (1991).Google Scholar
8. Matsuo, S., Adachi, Y., Jpn. J. Appl. Phys., 21, L4 (1982).Google Scholar
9. Zherzdev, A. V., Karpov, V. G., Pevtsov, A. B., Pilatov, A. G., Feoktistov, N. A., Sov. Phys. Semicond. 26, 421 (1992).Google Scholar
10. Chen, J., Sah, W., Lee, S., J. Appl. Phys., 70, 125 (1991).Google Scholar
11. Garow, J. M., Levy, R. A., Bhaskaran, M., Boeglin, H. J., Shalvoy, R., J. Electrochem. Soc., 140, 3001 (1993).Google Scholar
12. Boudreau, M., Boumerzoug, M., Kruzelecky, R. V., Mascher, P., Jessop, P. E., Thompson, D. A, Can. J. Phys. 70, 1104 (1992).Google Scholar
13. Boudreau, M., Boumerzoug, M., Kruzelecky, R. V., Mascher, P., Jessop, P. E., Thompson, D. A, Mat. Res. Soc. Symp. Proc. 300, 183 (1993).Google Scholar
14. Bourreau, C., Catherine, Y., Garcia, P., Mater. Sci. Eng. A, 139, 376 (1991).Google Scholar
15. Chin, B. L., Van den Ven, E. P., Solid State Technol., 31, 119 (1988).Google Scholar