Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-31T12:03:06.336Z Has data issue: false hasContentIssue false

Electrodeposited Metallic Superlattices

Published online by Cambridge University Press:  21 February 2011

D. S. Lashmore
Affiliation:
Institute for Materials Science and Engineering National Institute of Standards and Technology (formerly NBS) Gaithersburg, Maryland 20899
Robert Oberle
Affiliation:
Institute for Materials Science and Engineering National Institute of Standards and Technology (formerly NBS) Gaithersburg, Maryland 20899
Moshe P. Dariel
Affiliation:
Ben-Gurion University, Beer-Sheva, Israel
L. H. Bennettf
Affiliation:
Institute for Materials Science and Engineering National Institute of Standards and Technology (formerly NBS) Gaithersburg, Maryland 20899
Lydon Swartzendruber
Affiliation:
Institute for Materials Science and Engineering National Institute of Standards and Technology (formerly NBS) Gaithersburg, Maryland 20899
Get access

Abstract

Electrochemical deposition of artificial compositionally modulated superlattices is described. It is shown that the quality of these alloys is comparable or superior to materials produced by vapor deposition or sputtering. The ambient temperature process described by Yahalom has been modified to include a feedback and control system in order to compensate for natural convective disturbances in the electrolyte. Data is presented for copper-nickel samples of varying wavelengths down to 2 nm which suggests that magnetic properties of thin nickel layers are comparable with bulk nickel. Alloys of other types whose properties can be tailored on a near atomic scale will also be discussed along with potential applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hilliard, J.E. (1979) in “Modulated Structures”, (Crowley, J. M., Cohen, J. B., Salamon, M. B. and Wensch, B. J., eds.) pg 407 AIP Conf. Proceedings 53, Am. Inst. of Physics, New York Google Scholar
2. Koehler, J., Phys. Rev. B., 2, 6,(1970) 547 Google Scholar
3. Tsakalakos, T., Hilliard, J. E. J. Appl. Phys. 54, 734 (1983)Google Scholar
4. Jankowski., A., Tsakalakos, T., J. Appl. Phys. 57, 1835 (1985)Google Scholar
5. Thaler, J. B., Ketterson, C. M. and Hilliard, J. E., Phys. Rev. Lett. 41, 336 (1978)Google Scholar
6. Gyorgy, E.M., Dillon, J.F. Jr., McWhan, D. B., Rupp, L.W. Jr., Testardi, L. R..and Flanders, P. P. Phys. Rev. Letter 45, 57(1980)Google Scholar
7. Dillon, J. F. Jr., Gyorgy, E. M., Rupp, L. W. Jr., Yafet, Y. and Testardi, L. R., J.Appl. Phys. 52, 2256 (1981)Google Scholar
8. Gyorgy, E. M., McWhan, D. B., Dillon, J. F. Jr., Walker, L. R., and Waszczak, J. V., Phys. Rev. B 25, 6739 (1982)CrossRefGoogle Scholar
9. Gyorgy, E. M., McWhan, D. B., Dillon, J. F. Jr., Walker, L. R., Waszczak, J. V., Musser, D. P., and Willens, R. H., J. Magn. Magn. Mat 31–34 (1983) 915 Google Scholar
10. Zheng, J. Q., Falco, J. B., Ketterson, C. M., and Schuller, I. K., Appl. Phys. Lett. 38, 424 (1981)Google Scholar
11. Zheng, J. Q., Ketterson, C. M., Falco, J. B., and Schuller, I. K., J. Appl Phys. 53, 3150 (1982)Google Scholar
12. Flevaris, N. K., Ketterson, C. M., and Hilliard, J. E., J. Appl. Phys. 53, 2439 (1982)CrossRefGoogle Scholar
13. Blum, W., ”The Structure and Properties of Alternately Electrodeposited Metals”, Trans. Am. ELectochem. Soc. 40, (1921) 307 Google Scholar
14. Brenner, A. in Electrodeposition ofAlloys, Principoles and Practice, Vol.2, Academic Press, New York (1963).Google Scholar
15. Cohen, U., Koch, F. B., Sard, R., J. Electrochemical Soc. 130, 10 (1987)Google Scholar
16. Yahalom, J., Zadok, O., J. Mat. Sci 22, 6,(1987) 499, U. S. Pat. 4,652,348 (1987)Google Scholar
17. Tench, D., White, J., Met. Trans. 15A (1984) 2039 Google Scholar
18. Ogden, C., Plating and Surface Finishing 73, (1986) 130 Google Scholar
19. Lashmore, D.S., Dariel, M. P., J. of the Electrochem. Soc. 135,5 (1988) 1218 Google Scholar
20. Bennett, L.H., Lashmore, D.S., Dariel, M. P., Kaufman, M. J., Rubinstein, M., Lubitz, P., Zadok, O.,. and Yahalom, J. J. of Magnetism and Magnetic Materials 67 (1987) 239 CrossRefGoogle Scholar
21. McWhan, D. B. To be Published in Physics, Fabrication and Applications of Multilayer Structures, Dhez, P., Ed. by Plenum, New YorkGoogle Scholar
22. Jesser, W.A., Kuhlmann-Wilsdorf, D., Phys. Stat. Sol. 19, 95 (1967)Google Scholar
23. Jesser, W. A., Merwe, J. H. van der, ”An Exactly Solvable Model for Calculating Critical Misfit and Thickness in Epitaxial Superlattices”, I. Layers of Equal Elastic constants and Thickness and II. Layers of Unequal Elastic Constants and Thicknesses (to be published)Google Scholar
24. Jesser, W. A., and Merwe, J.H. van der, Critical Misfit and Thickness: An Overview (to be published)Google Scholar
25. Descpic, A. R., and Jovic, V. D., J. Electrochem. Soc. 134,(1987)3004 Google Scholar
26. Atzmony, U., Swartzendruber, L. J., Bennett, L. H., Dariel, M. P., Lashmore, D. S., Rubinstein, M., and Lubitz, P., J. Magn.and Magn Matls. 69 (1987) 237 Google Scholar
27. Bennett, L.H., Swartzendruber, L. J., Lashmore, D.S., Oberle, R. R., Atzmony, U., Dariel, M. P. and Watson, R. E. (to be published)Google Scholar