Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T09:58:35.886Z Has data issue: false hasContentIssue false

Electrochemical Reactivity of Zirconium-Based Bulk Metallic Glasses

Published online by Cambridge University Press:  01 February 2011

Annett Gebert
Affiliation:
Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, P.O. Box 270016, D-01171 Dresden, Germany
U. Kamachi Mudali
Affiliation:
Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, P.O. Box 270016, D-01171 Dresden, Germany Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India
Jürgen Eckert
Affiliation:
Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, P.O. Box 270016, D-01171 Dresden, Germany Darmstadt University of Technology, Department of Materials and Earth Sciences, Physical Metallurgy Division, Petersenstr.23, D-64287 Darmstadt, Germany
Ludwig Schultz
Affiliation:
Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, P.O. Box 270016, D-01171 Dresden, Germany
Get access

Abstract

Amorphous Zr-(Ti)-(Nb)-Al-Cu-Ni alloy samples were prepared by melt-spinning and copper mould casting in an argon atmosphere and characterized regarding their microstructure and thermal behavior. Their anodization behavior in aqueous environments with pH= 0.5 – 13 was studied by electrochemical polarization techniques in combination with surface analytical investigations, i.e. SEM/EDX, AES. In chloride-containing solutions the macroscopic corrosion resistance of bulk amorphous alloys is affected by the presence of heterogeneities, such as concentrated cluster zones of selected components or crystalline defects. Pitting phenomena are studied in neutral and acidic chloride solutions and as a result a local corrosion mechanism is proposed. The cathodic reactivity of alloy samples at different microstructural states and after pre-etching in fluoride solutions was investigated. After pre-etching melt-spun amorphous samples exhibit a significant increase in surface reactivity as expressed by a drastic increase in electrochemical capacities and in cathodic current densities as well as by a significant reduction of overpotentials for the hydrogen reduction reaction. The hydrogen sorption behavior was studied on samples galvanostatically charged at various cathodic current densities by means of XRD, DSC, TEM and thermal desorption analysis TDA. At room temperature Zr-based alloys absorb hydrogen up to H/M=1.65 mainly by interstitial solution of hydrogen atoms in the amorphous structure. The effect of absorbed hydrogen on the thermal stability and the crystallization behavior is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Acta Mater. 48, 277 (2000).Google Scholar
2. Loeffler, J.F., Intermetallics 11, 529 (2003).Google Scholar
3. Masumoto, T. and Hashimoto, K., Ann. Rev. Mater. Sci. 8, 215 (1978).Google Scholar
4. Latanision, R.M., Turn, J.C. Jr and Compeau, C.R., Third Int. Conf. on the Mechanical Behaviour of Metals, (eds. Miller, K.J. and Smith, R.F.), Pergamon Press, Oxford, Vol. 2, p. 475 (1979).Google Scholar
5. Turn, J.C. Jr and Latanision, R.M., Corrosion 39, 271 (1983).Google Scholar
6. Naka, M., Hashimoto, K. and Masumoto, T., J. Non-Cryst. Solids 30, 29 (1978).Google Scholar
7. Dutta, R.S., Savalia, R.T. and Dey, G.K., British Corrosion Journal 36, 221 (2001).Google Scholar
8. Kawashima, A., Yu, W.-P., Zhang, B.-P., Habazaki, H., Asami, K., and Hashimoto, K., Mater. Trans. JIM. 38, 443 (1997).Google Scholar
9. Gravano, S.M., Torchio, S., Mazza, F., Angelini, E. and Baricco, M., Corros. Sci. 33, 1227 (1992).Google Scholar
10. Schroeder, V., Gilbert, C.J. and Ritchie, R.O., Scripta mater. 38, 1481 (1998).Google Scholar
11. Pang, S., Zhang, T., Kimura, H., Asami, K. and Inoue, A., Mater. Trans. JIM 41, 1490 (2000).Google Scholar
12. Hiromoto, S., Tsai, A.-P., Sumita, M. and Hanawa, T., Corros. Sci. 42, 1651 (2000).Google Scholar
13. Harris, J.H., Curtin, W.A. and Tenhover, M.A., Phys. Rev. B 36, 5784 (1987).Google Scholar
14. Jaggy, F., Kieninger, W. and Kirchheim, R., Z. Physikal. Chemie NF 163, 431 (1989)Google Scholar
15. Zander, D., Leptien, H., Köster, U., Eliaz, N. and Eliezer, D., J. Non-Cryst. Solids. 250–252, 893 (1999).Google Scholar
16. Shoji, T. and Inoue, A., J. Alloys Comp. 292, 275 (1999).Google Scholar
17. Suh, D., Asoka-Kumar, P., Dauskardt, R. H., Acta Mater. 50, 537 (2002).Google Scholar
18. Mulas, G., Scudino, S. and Cocco, G., Mater. Sci. Eng A (in press).Google Scholar
19. Gebert, A., Eckert, J. and Schultz, L., Acta Mater. 46, 5475 (1998).Google Scholar
20. Gebert, A., Buchholz, K., El-aziz, A.M. and Eckert, J., Mater. Sci. Eng. A316, 60 (2001).Google Scholar
21. Gebert, A., Eckert, J., Bauer, H.-D. and Schultz, L., Mater. Sci. Forum 269–272, 797 (1998).Google Scholar
22. Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J. and Schultz, L., Mater. Sci. Eng. A267, 294 (1999).Google Scholar
23. Kühn, U., Eckert, J., Mattern, N. and Schultz, L., Mat. Res. Soc. Symp. Proc 644, L12.8.1 (2001).Google Scholar
24. Buchholz, K., Gebert, A., Mummert, K., Eckert, J. and Schultz, L., Mater. Sci. Forum 343–346, 213 (2000).Google Scholar
25. Gebert, A., Mummert, K., Eckert, J., Schultz, L. and Inoue, A., Mater. Corr. 48, 293 (1997).Google Scholar
26. Raju, V.R., Kühn, U., Wolff, U., Schneider, F., Eckert, J., Reiche, R. and Gebert, A., Mater. Lett. 57, 173 (2002).Google Scholar
27. Vaillant, M.L., Gloriant, T., Thibon, I., Guillou, A., Keryvin, V., Rouxel, T. and Ansel, D., Scripta Mater. 49, 1139 (2003).Google Scholar
28. Wolff, U., Gebert, A., Eckert, J. and Schultz, L., J. Alloys Comp. 346, 222 (2002).Google Scholar
29. Li, Z.P., Higuchi, E., Liu, B.H. and Suda, S., J. Alloys Comp. 293–295, 593 (1999).Google Scholar
30. Eckert, J., Kühn, U., Wolff, U., Gebert, A., Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing (PRICM4), eds. Hanada, S., Zhong, Z., Nam, S.W. and Wright, R.N., JIM, (2001) p. 103.Google Scholar
31. Gebert, A., Ismail, N., Wolff, U., Uhlemann, M., Eckert, J. and Schultz, L., Intermetallics 10, 1207 (2002).Google Scholar
32. Mattern, N. and Gebert, A., Appl. Phys. Lett. 83, 1134 (2003).Google Scholar
33. Ismail, N., Gebert, A., Uhlemann, M., Eckert, J. and Schultz, L., J. Alloys Comp. 314, 170 (2001).Google Scholar
34. Ismail, N., Uhlemann, M., Gebert, A. and Eckert, J., J. Alloys Comp. 298, 146 (2000).Google Scholar