Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-cnwzk Total loading time: 0.652 Render date: 2021-07-31T03:57:07.975Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage

Published online by Cambridge University Press:  29 November 2016

S. Mejía Sintillo
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001.
C. Cuevas Arteaga
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001.
R. Ma. Melgoza
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001.
P. Mijailova Nacheva
Affiliation:
Instituto Mexicano de Tecnología del Agua-Postgrado en Ingeniería Ambiental UNAM-Campus IMTA. Blvd. Paseo Cuauhnáhuac 8532, Col. Progreso, C.P. 62550 Jiutepec, Mor., México.
Get access

Abstract

The array of the TiO2 nanotubular films, also called one-dimensional nanostructures is carried out by electrochemical anodization tests, for which, titanium sheets were used with a high purity (99.7% and 0.25 mm thickness) in a solution of deionized water and glycerol (50:50 vol.%) + 0.27M NH4F applying a voltage of 20V. Electrochemical tests were performed at an anodization time of 2:30 hours and 3:30 hours. For the tests mirror polished foils and unpolished foils with flat surfaces to achieve better uniform arrays during the anodic growth of nanotubes were used. After anodizing, samples were observed in the scanning electron microscope (SEM) to determine the geometry and morphology of the films. Also, potentiodynamic polarization curves were performed for samples crystallized at 600 °C and 450 °C (polished and unpolished) to determine the electrochemical stability of the films, which were presented at two aqueous solutions: 1M of Na2SO4 (pH= 6.7) and 1M Na2SO4 + H2SO4 (pH= 3.2). Mechanical characterization was also performed by nanoindentation technique through the application of loading/unloaings of: (1, 2.5, 5, 10 mN). Chemical characterization was performed using XRD analysis, with the aim to determine the crystalline phases formed in the films crystallized at 450 °C and 600 °C. The electrochemical characterization showed that the TiO2 nanotubular film obtained by mirror polished and crystallized at 600 °C showed better electrochemical stability. Nanoindentation tests showed deformation curves, and the parameters such as hardness, Vickers hardness, elastic modulus and the maximum penetration depth were determined as mechanical parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Macak, J.M., Hildebrand, H., Marten-Jahns, U., Schmuki, P., Journal of Electroanalytical Chemistry 621, 254266 (2008).CrossRef
Regonini, D., Satka, A., Jaroenworaluck, A., Allsopp, D.W.E., Bowen, C.R., Stevens, R., Electrochimica Acta 74, 244253, (2012).CrossRef
Yang, Yang, Wang, Xiaohui, Materials Science and Engineering B 149, 5862, (2008).CrossRef
Xiao, Xiufeng, Ouyang, Keguan, Liu, Rongfang, Liang, Jianhe, Applied Surface Science 255, 36593663 (2009).CrossRef
Albu, Sergiu P., Schmuki, Patrik, Electrochimica Acta 91, 9095 (2013).CrossRef
Palmas, S., Da Pozzo, A., Delogu, F., Mascia, M., Vacca, A., Guisbiers, G., Journal of Power Sources 204, 265272 (2012).CrossRef
Valota, A., LeClere, D.J., Skeldon, P., Curioni, M., Hashimoto, T., Berger, S., Kunze, J., Schmuki, P., Thompson, G.E., Electrochimica Acta 54, 43214327 (2009.)CrossRef
Kim, Doohun, Schmidt-Stein, Felix, Hahn, Robert, Schmuki, Patrik, Electrochemistry Communications 10, 10821086 (2008).CrossRef
Macak, Jan M., Tsuchiya, Hiroaki, Taveira, Luciano, Aldabergerova, Saule, and Schmuki, Patrik, Angew. Chem. Int. Ed., 44, 74637465 (2005).CrossRef
Macak, Jan M., Schmuki, Patrik, Electrochimica Acta 52, 12581264 (2006).CrossRef
Alivov, Yahya, Fan, Z. Y., and Johnstone, D., Journal of applied physics106, 343 (2009).
Mutuma, Bridget K., Shao, Godlisten N., Kim, Won Duck, Kim, Hee Taik, Journal of Colloid and Interface Science 442, 17 (2015).CrossRef
Cabaleiro, D., Nimo, J., Pastoriza-Gallego, M.J., Piñeiro, M.M., Legido, J.L., Lugo, L., Chem, J.. Thermodynamics 83, 6776 (2015).CrossRef
Yu, Jiaguo, Wang, Bo, Applied Catalysis B: Environmental 94, 295302 (2010).CrossRef
Lai, Yuekun, Zhuang, Huifang, Sun, Lan, Chen, Zhong, Lin, Changjian, Electrochimica Acta 54, 65366542 (2009).CrossRef
Berger, S., Ghicov, A., Nah, Y.-C., and Schmuki, P., Langmuir 25 (9), 48414844 (2009).CrossRef
Mohammadi Zahrani, E., Alfantazi, A.M., Corrosion Science 65, 340359 (2012).CrossRef
Games, Lucas Aloia, Sanchez, Andrea Gomez, Jimenez-Pique, Emilio, Schreiner, Wido H., Ceré, Silvia M., Ballarre, Josefina, Surface & Coatings Technology 206, 47914798 (2012).CrossRef
Gregorio-Vázquez, Lucia, Cuevas-Arteaga, Cecilia, Hernández, Grecia, del Ángel-Meraz, Ebelia, Avances en Ciencia e Ingeniería 4-1, 8595 (2013).
Vera-Jiménez, A. M., Melgoza-Alemán, R.M., Valladares-Cisneros, M.G., Cuevas-Arteaga, C., Journal of Nanomaterials 12, 112 (2015) http://dx.doi.org/10.1155/2015/624073.CrossRef
Reynaud Morales, A.G., Cuevas Arteaga, C., Superficies y Vacío 26(2), 6470 (2013).
Crawford, G.A., Chawla, N., Das, K., Bose, S., Bandyopadhyay, A., Acta Biomaterialia 3, 359367 (2007).CrossRef
Tang, C. Y., Tsui, C. P., Janackovic, DJ., Uskokovic, P. S., Journal of Optoelectronics and Advanced Materials 8/3, 11941199 (2006).
Lucca, D.A., Herrmann, K., Klopfstein, M.J.. Nanoindentation: Manufacturing Technology 59, 803819 (2010).
Soares, Paulo, Mikowski, Alexandre, Lepienski, Carlos M., Santos, Emanuel Jr., Soares, Gloria A., Swinka Filho, Vitoldo, Kuromoto, Neide K.. Hardness and Elastic Modulus of TiO2 Anodic Films Measured by Instrumented Indentation. Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jbm.b.30900
Li, Xiaodong, Bhushan, Bharat, Materials Characterization 48, 1136 (2002) ‘‘Standard Practice for Instrumented Indentation Testing,’’ E2546–07, ASTM International, West Conshohocken, PA (2007) ‘‘Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters,’’ ISO 14577, International Organization for Standardization, Geneva, Switzerland (2002).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *