Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T10:18:00.077Z Has data issue: false hasContentIssue false

Electrical Properties of Polycrystalline-Silicon Thin Films for VLSI

Published online by Cambridge University Press:  28 February 2011

T I Kamins*
Affiliation:
Hewlett-Packard Laboratories, Palo Alto CA 94303-0867
Get access

Abstract

The electrical properties of polycrystalline silicon differ from those of single-crystal silicon because of the effect of grain boundaries. At low and moderate dopant concentrations, dopant segregation to and carrier trapping at grain boundaries reduces the conductivity of polysilicon markedly compared to that of similarly doped single-crystal silicon. Because the properties of moderately doped polysilicon are limited by grain boundaries, modifying the carrier traps at the grain boundaries by introducing hydrogen to saturate dangling bonds improves the conductivity of polysilicon and allows fabrication of moderate-quality transistors with their active regions in the polycrystalline films. Removing the grain boundaries by melting and recrystallization allows fabrication of high-quality transistors. When polysilicon is used as an interconnecting layer in integrated circuits, its limited conductivity can degrade circuit performance. At high dopant concentrations, the active carrier concentration is limited by the solid solubility of the dopant species in crystalline silicon. The current through oxide grown on polysilicon can be markedly higher than that on oxide of similar thickness grown on singlecrystal silicon because the rough surface of a polysilicon film enhances the local electric field in oxide thermally grown on it. Consequently, the structure must be controlled to obtain reproducible conduction through the oxide. The differences in the behavior of polysilicon and single-crystal silicon and the limited electrical conductivity in polysilicon are having a greater impact on integrated circuits as the feature size decreases and the number of devices on a chip increases in the VLSI era.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saraswat, K and Mohammadi, F, IEEE Trans Electron Devices ED–29, 645 (1982)Google Scholar
2. Mandurah, M M, Saraswat, K C, Helms, C R, and Kamins, T I, J Appl Phys 51, 5755 (1980)Google Scholar
3. Wong, C Y, Grovenor, C R M, Batson, P E, and Smith, D A, J Appl Phys 57, 438 (1985)Google Scholar
4. Tandon, J L, Harrison, H B, Neoh, C L, Short, K T and Williams, J S, Appl Phys Lett 40, 228 (1982)Google Scholar
5. Mandurah, M M, Saraswat, K C and Kamins, T I, Appl Phys Lett 36, 683 (1980)Google Scholar
6. Grovenor, C R M, Batson, P E, Smith, D A, and Wong, C, Phil Mag A 50, 409 (1984)Google Scholar
7. Rose, J H and Gronsky, R, Appl Phys Lett 41, 993 (1982)CrossRefGoogle Scholar
8. Kazmerski, L L, Ireland, P J, and Ciszek, T F, Appl Phys Lett 36, 323 (1980)Google Scholar
9. Kamins, T I, J Appl Phys 42, p4357 (1971)Google Scholar
10. Seto, J Y W, J Appl Phys 46, 5247 (1975)Google Scholar
11. Korsh, G J and Muller, R S, Solid-State Electronics 21, 1045 (1978).Google Scholar
12. Ghosh, A K, Fishman, C, and Feng, T, J Appl Phys 51, 446 (1980)Google Scholar
13. Lu, N C C, Gerzberg, L, Lu, C-Y, and Meindl, J D, IEEE Trans Electron Devices ED–30, 137 (1983).CrossRefGoogle Scholar
14. Mandurah, M M, Saraswat, K C, and Kamins, T I, IEEE Trans Electron Devices ED–28, 1163, 1171 (1981)Google Scholar
15. Martinez, J, Criado, A, and Piqueras, J, J Appl Phys 52, 1301 (1981)CrossRefGoogle Scholar
16. Kamins, T I, IEEE Trans Parts, Hybrids, and Packaging PHP–10, 221 (1974)Google Scholar
17. Seager, C H and Pike, G E, Appl Phys Lett 35, 709 (1979)Google Scholar
18. Seager, C H, J Appl Phys 52, 3960 (1981)Google Scholar
19. Jackson, W B, Johnson, N M, and Biegelsen, D K, Appl Phys Lett 43, 195 (1983)Google Scholar
20. Schubert, W K and Lenahan, P M, Appl Phys Lett 43, 497 (1983)Google Scholar
21. Baccarani, G, Ricco, B, and Spadini, G, J Appl Phys 49, 5565 (1978)Google Scholar
22. Landsberg, P T and Abrahams, M S, J Appl Phys 55, 4284 (1984)Google Scholar
23. Kenyon, P and Dressel, H, J Vac Sci Technol A 2, 1486 (1984)CrossRefGoogle Scholar
24. Lu, C-Y, Lu, N C-C, and Shih, C-C, J Electrochem Soc 132, 1193 (1985)CrossRefGoogle Scholar
25. Mahan, J E, Appl Phys Lett 41, 479 (1982)Google Scholar
26. Seager, C H and Pike, G E, Appl Phys Lett 37, 747 (1980)Google Scholar
27. Taniguchi, M, Hirose, M, Osaka, Y, Hasegawa, S and Shimizu, T, Japan J Appl Phys 19, 665 (1980)Google Scholar
28. Loh, E, J Appl Phys 54, 4463 (1983)Google Scholar
29. Gat, A, Gerzberg, L, Gibbons, J F, Magee, T J, Peng, J, and Hong, J D, Appl Phys Lett 33, 775 (1978)Google Scholar
30. Yaron, G, Hess, L D, and Olsen, D L, Proc Mat Res Soc Symp (Boston, 1979) (ed. White, C W and Peercy, P S, Academic Press, 1980), p 626 Google Scholar
31. Lee, M-K, Lu, C-Y, Chang, K-Z, and Shih, C, Solid-State Electronics 27, 995 (1984)Google Scholar
32. Fa, C H and Jew, T T, IEEE Trans Electron Devices ED–13, 290 (1966)Google Scholar
33. Kamins, T I, Solid-State Electronics 15, 789 (1972)Google Scholar
34. Lee, K F, Gibbons, J F, Saraswat, K C, and Kamins, T I, Appl. Phys. Lett. 35, 173 (1979)CrossRefGoogle Scholar
35. Makino, T and Nakamura, H, Appl Phys Lett 35, 551 (1979)Google Scholar
36. Kamins, T I and Marcoux, P J, IEEE Electron Device Lett EDL–1, 159 (1980)Google Scholar
37. Malhi, S D S, Chatterjee, P K, Pinizzotto, R F, Lam, H W, Chen, C E C, Shichijo, H, Shah, R R, and Bellavance, D W, IEEE Electron Device Lett EDL–4, 369 (1983)Google Scholar
38. Srivastava, P C, Bourgoin, J C, Rabajo, F, and Arroyo, J Mimila, J Appl Phys 53, 8633 (1982)Google Scholar
39. Young, R T, Lu, M C, Westbrook, R D, and Jellison, G E Jr, Appl Phys Lett 38, 628 (1981)Google Scholar
40. Miller, G L and Orr, W A, Appl Phys Lett 37, 1100 (1980)CrossRefGoogle Scholar
41. Wada, Y and Nishimatsu, S, Denki Kagaku 47, 118 (1979)Google Scholar
42. Murota, J and Sawai, T, J Appl Phys 53, 3702 (1982)CrossRefGoogle Scholar
43. Makino, T and Nakamura, H, Solid-State Electronics 24, 49 (1981)Google Scholar
44. Solmi, S, Severi, M, Angelucci, R, Baldi, L, and BiTenchi, R, J Electrochem Soc 129, 1811 (1982)Google Scholar
45. Mandurah, M M, Saraswat, K C and Kamins, T I, J Electrochem Soc 126, 1019 (1979)Google Scholar
46. Lifshitz, N, J Electrochem Soc 130, 2464 (1983)Google Scholar
47. Bravman, J C and Sinclair, R, Thin Solid Films 104, 153 (1983)Google Scholar
48. Joshi, D P and Srivastava, R S, IEEE Trans Electron Devices ED–31, 920 (1984)Google Scholar
49. Chow, R and Powell, R A, Semiconductor International (May 1985), p 108 Google Scholar
50. DiMaria, D J and Kerr, D R, Appl Phys Lett 27, 505 (1975)Google Scholar
51. Anderson, R M and Kerr, D R, J Appl Phys 48, 4834 (1977)Google Scholar
52. Kamins, T I and Cass, T R, Thin Solid Films 16, 147 (1973)Google Scholar
53. Kamins, T I, J Electrochem Soc 127, 686 (1980)CrossRefGoogle Scholar
54. Duffy, M T, McGinn, J T, Shaw, J M, Smith, R T, Soltis, R A, and Harbeke, G, RCA Review 44, 313 (June 1983)Google Scholar
55. Brown, W A and Kamins, T I, Solid State Technology (July 1979), p 51 Google Scholar
56. Sternheim, M, Kinsbron, E, Alspector, J, and Heimann, P A, J Electrochem Soc 130, p1735 (1983)Google Scholar
57. Yaron, G, Hess, L D, and Kokorowski, S, IEEE Trans Electron Devices ED–27, 964 (1980)Google Scholar
58. Marcus, R B, Sheng, T T, and Lin, P, J Electrochem Soc 129, 1282 (1982)Google Scholar
59. Ham, W E, Abrahams, M S, and Buiocchi, C J, J Electrochem Soc 128, 1623 (1981)Google Scholar
60. Sunami, H, Koyanagi, M, and Hashimoto, N, J Electrochem Soc 127, 2499 (1980)CrossRefGoogle Scholar