Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T07:19:18.988Z Has data issue: false hasContentIssue false

Electrical, Optical, and Structural Properties of Fluorine-Doped CdO

Published online by Cambridge University Press:  21 March 2011

Teresa M. Barnes
Affiliation:
Dept. Of Chemical Engineering, Colorado School of Mines, Golden, CO 80401, USA
Xiaonan Li
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Clay Dehart
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Helio Moutinho
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Sally Asher
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Yanfa Yan
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Timothy A. Gessert
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Get access

Abstract

We have investigated the effects of fluorine doping and deposition temperature on CdO grown by metal-organic chemical vapor deposition (MOCVD). Fluorine doping increases the carrier concentration of the films by about one order of magnitude at a deposition temperature of 300°C. The increased carrier concentration increases the optical bandgap from 2.4 eV to 2.85 eV. On the other hand, the higher deposition temperatures enabled by fluorine doping improve the crystal structure of the films. Therefore a higher mobility has been reached. The polycrystalline thin film CdO deposited at 450°C has the Hall mobility of 262 cm2/V-s and a carrier concentration of 3.8×1019/cm3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chopra, K.L., Major, S., and Pandya, D.K., Thin Solid Films 102, 146 (1983).Google Scholar
2 Haacke, G., Annual Review of Materials Science 7, 7393 (1977).Google Scholar
3 Coutts, T. J., Young, D.L., Li, X., Mulligan, W.P., and Wu, X., J. Vac. Sci. Technol. A 18 (6), 2646 (2000).Google Scholar
4 Li, X., Yan, Y., Mason, A., Gessert, T. A., and Coutts, T. J., Electrochemical and Solid State Letters 4 (9), C66–C68 (2001).Google Scholar
5 Ueda, N., Maeda, H., Hosono, H. et al., Journal of Applied Physics 84 (11), 61746177 (1998).Google Scholar
6 Phatak, G. and Lal, R., Thin Solid Films 209, 240–149 (1991).Google Scholar
7 Subramanyam, T.K, Krishna, B. Radha, Uthanna, S., Naidu, B. S., and Reddy, P. J., Vacuum 48 (6), 565569 (1997).Google Scholar
8 Ferro, R. and Rodriguez, J.A., Thin Solid Films 347, 295–198 (1999).Google Scholar
9 Ferro, R., Rodriguez, J. A., Virgil, O., Morales-Acevedo, A., and Contreras-Puente, G., phys. stat. sol (a) 177, 477483 (2000).Google Scholar
10 Li, X., Young, D. L., Moutinho, H. Yan, Y., Narayanswamy, C., Gessert, T., and Coutts, T., Electrochemical and Solid State Letters In Press (2001).Google Scholar
11 Pankove, J. I., Optical Processes in Semiconductors (Dover Publications Inc., New York, 1975).Google Scholar
12 Gurumurugan, K., Mangalaraj, D., and Narayandass, Sa. K., Journal of Crystal Growth 147, 355360 (1995).Google Scholar
13 Yan, M., Lane, M., Kannewurf, C. R., and Chang, R.P.H., Applied Physics Letters, 78(16), 2342 (2001).Google Scholar
14 Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60 (11), 1 (1986).Google Scholar
15 Jarzebski, Z.M., Oxide Semiconductors (Pergamon Press, Oxford, 1973).Google Scholar