Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T15:19:59.946Z Has data issue: false hasContentIssue false

Electrical Characteristics Of The Transparent Conductive Oxide / p-a-Si:H Interface

Published online by Cambridge University Press:  10 February 2011

Stephan Guse
Affiliation:
Universitat-GH Siegen, Institut fair Halbleiterelektronik (IBE), 57068 Siegen, Germany
Dimitrios Peros
Affiliation:
Universitat-GH Siegen, Institut fair Halbleiterelektronik (IBE), 57068 Siegen, Germany
Michael Wagner
Affiliation:
Universitat-GH Siegen, Institut fair Halbleiterelektronik (IBE), 57068 Siegen, Germany
Markus Böhm
Affiliation:
Universitat-GH Siegen, Institut fair Halbleiterelektronik (IBE), 57068 Siegen, Germany
Get access

Abstract

The current-voltage (I-V) characteristics of the interfaces between boron-doped hydrogenated amorphous silicon (p-a-Si:H) and transparent conductive oxides (TCOs) such as tin oxide (SnO2) and indium tin oxide (ITO) are experimentally determined. The measurements are performed on especially developed Kelvin cross bridge structures which allow the direct sensing of the contact region. All contacts exhibit for high dopant concentrations an almost linear I-V characteristic. The values of the contact resistance depend on the TCO type and range between 0.5 and 4 Ω· cm2 at 25°C. Gradual reduction of the boron doping level leads to a remarkable increase of the contact resistance and finally to a rectifying behavior. The results indicate that tunnelling across the interface contributes significantly to the current transport. This conclusion is also supported by the behavior of the I-V characteristics at low temperatures. Regarding degradation of the contacts a systematic reduction of the contact resistance is observed after ageing them for 1000 hours at 80°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wagner, S. and Carlson, D.E., Proc. 10th European Photovoltaic Solar Energy Conference, Lisbon, 1179 (1991).Google Scholar
2. Arai, Y., Ishii, M., Shinohara, H., Yamazaki, S., IEEE Electr. Dev. Lett. 12, 460 (1991).Google Scholar
3. Kumar, S. and Drevillon, B., J. Appl. Phys. 65 (8), 3023 (1989).Google Scholar
4. Jackson, W. B., Nemanich, R. J., Thompson, M. J., Wacker, B., Phys. Rev. B, 6936 (1986).Google Scholar
5. Peros, D., Guse, S., Wagner, M., Böhm, M., Proc. 13th European Photovoltaic Solar Energy Conference, Nice, 226 (1995).Google Scholar
6. Itoh, K., Matsumoto, H., Kobata, T., Fujishima, A., Appl. Phys. Lett. 51, 1685 (1987).Google Scholar
7. Smole, F., Topic, M. and Furlan, J., Proc. 12th European Photovoltaic Solar Energy Conference, Amsterdam, 77 (1994).Google Scholar
8. Carvalho, C., de Nijs, J. M. M., Martins, R., Guimaraes, L., Proc. 10th European Photovoltaic Solar Energy Conference, Lisbon, Portugal, 1069 (1991).Google Scholar
9. Arch, J. K., Rubinelli, F. A., Hou, J. -Y, and Fonash, S. J., J. Appl. Phys. 69 (10), 7057 (1991).Google Scholar
10. Proctor, S. J., Linholm, L. W., Mazer, J. A., IEEE Trans. Electr. Dev. ED–30, 1535 (1983).Google Scholar
11. Guse, S., Peros, D., Wagner, M., Böhm, M., Proc. 12th European Photovoltaic Solar Energy Conference, Amsterdam, 120 (1994).Google Scholar
12. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, Inc., 1981), p. 263.Google Scholar
13. Green, M. A., King, F.D., and Shewchun, J., Solid State Electron. 17, 551 (1974).Google Scholar