Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-21T05:39:56.453Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Erbium in MBE Silicon and Si/Ge Alloys

Published online by Cambridge University Press:  22 February 2011

H. Efeoglu
Affiliation:
University of Manchester Institute of Science & Technology, Manchester, M60 1QD, UK
J. H. Evans
Affiliation:
University of Manchester Institute of Science & Technology, Manchester, M60 1QD, UK
J. M. Langer
Affiliation:
University of Manchester Institute of Science & Technology, Manchester, M60 1QD, UK
A. R. Peaker
Affiliation:
University of Manchester Institute of Science & Technology, Manchester, M60 1QD, UK
N. L. Rowell
Affiliation:
National Research Council of Canada, Ottawa, Canada, K1A DR6.
J-P Noel
Affiliation:
National Research Council of Canada, Ottawa, Canada, K1A DR6.
D. D. Perovic
Affiliation:
National Research Council of Canada, Ottawa, Canada, K1A DR6.
T. E. Jackman
Affiliation:
National Research Council of Canada, Ottawa, Canada, K1A DR6.
D. C. Houghton
Affiliation:
National Research Council of Canada, Ottawa, Canada, K1A DR6.
Get access

Abstract

This paper reports the incorporation of erbium into MBE Si and Si/Ge alloys with substrate temperatures of 500°C and 700°C. Using a solid source MBE system, concentrations of erbium between 1018 and 1022 cm−3 have been studied by photoluminescence, electrical measurements, SIMS and TEM. We find no shallow donors or acceptors attributable to erbium but we observe a high concentration of deep states with an activation energy of ∼360 meV. The photoluminescence output is of greatest magnitude when [Er] =2 × 1018 cm−3. Above this concentration the onset of erbium precipitates can just be observed using TEM and at even higher concentrations structured growths of erbium suicide are apparent. The effect on the optical activity of Si:Er that has subsequently been implanted with oxygen is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W. and Scneider, J., Appl. Phys. Lett. 42, 381383, (1985)CrossRefGoogle Scholar
2. Ennen, H. and Schneider, J., 13th Int. Conf. on Defects in Semiconductors edited by Kimer-ling, L. C. and Parsey, J. M. Jr, California, 1984, pp.115127 Google Scholar
3. Rochaix, C., Roland, A., Favennec, P. N., Lambert, B., Le Corre, A., L'Haridon, H. and Salvi, M., Jap. J. Appl. Phys. 27, L2348–L2350 (1988)CrossRefGoogle Scholar
4. Zhao, X., Hirakawa, K. and lkoma, T., Appl. Phys. Lett. 54, 712714 (1989)CrossRefGoogle Scholar
5. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D. and Le Gulllou, Y., Electronics Lett. 25, 718719 (1989)Google Scholar
6. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M. and Gauneau, M., Jap. J. Appl. Phys. 29, L524–L526 (1990)Google Scholar
7. Widdershoven, F. P. and Naus, J. P. M., Mat. Sci. Eng. B4, 7174, (1989)CrossRefGoogle Scholar
8. Klein, P. B. and Pomrenke, G. S., Electronics Lett. 24, 15021503 (1988)Google Scholar
9. Favennec, P. N., L'Haridon, H., Moutonnet, D. and Salvi, M., Electronics Lett. 25, 15561558 (1990)Google Scholar