Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T14:54:49.165Z Has data issue: false hasContentIssue false

Elastic Properties of Pure and Hydrogenated Ce/Fe Multilayer Films

Published online by Cambridge University Press:  15 February 2011

R. Hassdorf
Affiliation:
Universität Göttingen, I. Physikalisches Institut, Bunsenstrasse 9, D-37073 Göttingen, Germany
M. Arend
Affiliation:
Universität Göttingen, I. Physikalisches Institut, Bunsenstrasse 9, D-37073 Göttingen, Germany
W. Felsch
Affiliation:
Universität Göttingen, I. Physikalisches Institut, Bunsenstrasse 9, D-37073 Göttingen, Germany
Get access

Abstract

The study of the elastic properties of pure Ce/Fe multilayers throughout the structural phase transition of the Fe layers from crystalline to amorphous reveals striking similarities to the crystal-to-glass transition in bulk metallic materials which is driven by a shear instability of the crystal lattice. The transition is reflected in a pronounced minimum (∼ –70%) of the flexural modulus of the multilayers as determined by a vibrating-reed technique. Hydrogenation leads to multilayers composed of CeH∼2/Fe, with distinctly different moduli depending on the texture of the Fe sublayers. For multilayers with a Fe (111) texture a reorientation transition of the spontaneous magnetization is observed at a well-defined temperature. This transition is accompanied by a relaxation of thermal stresses and a considerable softening (∼30%) of the flexural modulus.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see for example, Schuller, I.K., Fartash, A., and Grimsditch, M., MRS Bull. 15 (10), 3337 (1990).Google Scholar
2. Thiele, J., Klose, F., Schurian, A., Schulte, O., Felsch, W., and Bremert, O., J. Magn. Magn. Mater. 119, 141 (1993).Google Scholar
3. Okamoto, P.R., Rehn, L.E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Common Met. 140, 231 (1988).Google Scholar
4. Ettl, C. and Samwer, K., Mater. Sci. Eng. A 178, 245 (1994).Google Scholar
5. Bauer, Ph., Klose, F., Schulte, O., and Felsch, W., J. Magn. Magn. Mater. 138, 163 (1994).Google Scholar
6. Schulte, O., Klose, F., and Felsch, W., submitted to Phys. Rev. B.Google Scholar
7. Weidinger, A. and Klose, F. (unpublished results).Google Scholar
8. Klose, F., Steins, M., Kacsich, T., and Felsch, W., J. Appl. Phys. 74, 1040 (1993).Google Scholar
9. Klose, F., Schulte, O., Rose, F., Felsch, W., Pizzini, S., Giorgetti, C., Baudelet, F., Dartyge, E., Krill, G., and Fontaine, A., Phys. Rev. B 50, 6174 (1994).Google Scholar
10. Gschneidner, K.A. Jr., Bull. Alloy Phase Diagrams 11, 216 (1990).Google Scholar
11. Hassdorf, R., Arend, M., and Felsch, W., Phys. Rev. B 51, 8715 (1995).Google Scholar
12. Baral, D., Hilliard, J.E., Ketterson, J.B., and Miyano, K., J. Appl. Phys. 53, 3552 (1982).Google Scholar
13. see, e.g., Landes, J., Sauer, Ch., Kabius, B., and Zinn, W., Phys. Rev. B 44, 8342 (1991).Google Scholar
14. Fullerton, E.E., Kumar, S., Grimsditch, M., Kelly, D.M., and Schuller, I.K., Phys. Rev. B 48, 2560 (1993).Google Scholar
15. Carlotti, G., Fioretto, D., Socino, G., Rodmacq, B., and Pelosin, V., J. Appl. Phys. 71, 4897 (1992).Google Scholar
16. and, M. Li Johnson, W.L., Phys. Rev. Lett. 70, 1120 (1993).Google Scholar
17. Thiele, J., Klose, F., Schulte, O., Schurian, A., and Felsch, W., Appl. Surf. Sci. 65/66, 175 (1993).Google Scholar
18. Wolf, D., Mater. Sci. Eng. A 126, 1 (1990).Google Scholar
19. Hülsen, U. v., Geyer, U., Schulte, O., Hassdorf, R., and Felsch, W. (unpublished results).Google Scholar
20. Boroch, E. and Kaldis, E., Z. Phys. Chem. Neue Folge 163, 117 (1989).Google Scholar
21. Chappert, C. and Bruno, P., J. Appl. Phys. 64, 5736 (1988).Google Scholar