Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-19T21:07:12.655Z Has data issue: false hasContentIssue false

Efficient Luminescence from {11.2} InGaN/GaN Quantum Wells

Published online by Cambridge University Press:  01 February 2011

Mitsuru Funato
Affiliation:
Kyoto University, Department of Electronic Science and Engineering, Kyoto 615–8510, Japan
Koji Nishizuka
Affiliation:
Kyoto University, Department of Electronic Science and Engineering, Kyoto 615–8510, Japan
Yoichi Kawakami
Affiliation:
Kyoto University, Department of Electronic Science and Engineering, Kyoto 615–8510, Japan
Yukio Narukawa
Affiliation:
Nitride Semiconductor Research Laboratory, Nichia Corporation, Tokushima 774–8601, Japan
Takashi Mukai
Affiliation:
Nitride Semiconductor Research Laboratory, Nichia Corporation, Tokushima 774–8601, Japan
Get access

Abstract

InGaN/GaN multiple quantum wells (MQWs) with [0001], <11.2>, and <11.0> orientations have been fabricated by means of the re-growth technique on patterned GaN templates with striped geometry, normal planes of which are (0001) and {11.0}, on sapphire (0001) substrates. It was found that photoluminescence intensity of the {11.2} QW is the strongest among the three QWs, and its internal quantum efficiency was estimated to be as large as about 40% at room temperature. The radiative recombination lifetime of the {11.2} QW was about 0.39 ns at 14 K, which was 3.8 times shorter than that of conventional c-oriented QWs emitting at a similar wavelength. These findings are well explained by the high internal quantum efficiency in the {11.2} QW owing to the suppression of piezoelectric fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
2. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
3. Bernardini, F. and Fiorentini, V., phys. stat. sol. (b) 216, 391 (1999).Google Scholar
4. Hangleiter, A., Im, J. S., Kolmer, H., Heppel, S., Off, J., and Scholz, F., MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).Google Scholar
5. Takeuchi, T., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 39, 413 (2000).Google Scholar
6. Takeuchi, T., Lester, S., Basile, D., Girolami, G., Twist, R., Mertz, F., Wong, M., Schneider, R., Amano, H., and Akasaki, I., Proc. Int. Workshop on Nitride Semiconductors, IPAP Conf. 1, 137 (2000).Google Scholar
7. Waltereit, P., Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K. H., Nature (London), 406, 865 (2000).Google Scholar
8. Hiramatsu, K., Nishiyama, K., Onishi, M., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y., and Maeda, T., J. Cryst. Growth, 221, 316 (2000).Google Scholar
9. Funato, M., Kawaguchi, Y., and Fujita, Sg., Matter. Res. Soc. Symp. Proc. 789, 347 (2004).Google Scholar
10. Sala, F. D., Carlo, A. D., Lugli, P., Bernardini, F., Fiorentini, V., Scholz, R., and Jancu, J.-M., Appl. Phys. Lett. 74, 2002 (1999).Google Scholar
11. Funato, M. (to be submitted elsewhere).Google Scholar
12. unpublished data.Google Scholar
13. Hsu, J. W. P., Matthews, M. J., Abusch-Magder, D., Kleiman, R. N., Lang, D. V., Richter, S., Gu, S. L., and Kuech, T. F., Appl. Phys. Lett. 79, 761 (2001).Google Scholar
14. Yoshimoto, M., Saraie, J., and Nakamura, S., J. Cryst. Growth, 237, 1075 (2002).Google Scholar