Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-09-21T17:05:05.223Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Effects of Substrate Pre-deposition Annealing and Deposition Parameters on the Properties of RF Sputter-deposited ZnO Films

Published online by Cambridge University Press:  10 May 2012

T. N. Oder
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, USA
M. McMaster
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, USA
A. Smith
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, USA
N. Velpukonda
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, USA
D. Sternagle
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, USA
Get access

Abstract

Zinc Oxide thin films were deposited on sapphire substrates by radio frequency (RF) magnetron sputtering from an ultra-high purity ZnO solid target. The ZnO films were deposited on sapphire substrates heated in oxygen and/or in vacuum prior to deposition. Additional parameters investigated included the substrate temperature varied from 25 °C to 600 °C, the deposition gas pressure varied from 5 mTorr to 40 mTorr and the gas flow rate varied from 5 to 30 standard cubic centimeter per minute (sccm). The resulting films were annealed using a rapid thermal processor in N2 gas at 900 °C for 5 min. Analyses carried out using photoluminescence spectroscopy (PL) and X-ray diffraction (XRD) measurements indicate that films deposited at 300 °C using Ar:O2 (1:1) had the best optical and microstructure qualities. Pre-heating the sapphire substrate in oxygen prior to deposition was found to create a smoother sapphire surface, and this produced a ZnO film with greatly improved qualities. This film had a luminescence peak at 3.362 eV with a full-width-half maximum (FWHM) value of 15.3 meV when measured at 11 K. The XRD 2θ-scans had peaks at 34.4° with the best FWHM value of only 0.10°. Production of high quality ZnO materials is a necessary step towards realizing highly conductive p-type doped ZnO materials which is currently a major goal in research efforts on ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, M. R., Haboeck, U., Zimmer, P., Hoffmann, A., Lautenschläger, S., Neumann, C., Sann, J., Meyer, B. K., Proc. of SPIE 6474, 64740X1 (2007).CrossRefGoogle Scholar
2. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
3. Van de Walle, C. G., Laks, D. B., Neumark, G.F., and Pantelides, S. T., Phys. Rev. B 47, 9425 (1993).CrossRefGoogle Scholar
4. Zhang, S. B., Wei, S.-H., and Zunger, A., Phys. Rev. B 63, 075205 (2001).CrossRefGoogle Scholar
5. Lee, E.-C., Kim, Y.-S., Jin, Y.-G., and Chang, K. J., Phys. Rev. B 64, 085120 (2001).CrossRefGoogle Scholar
6. Hoffmann, K. and Hahn, D., Phys. Status Solidi a 24, 637 (1974).CrossRefGoogle Scholar
7. Hausmann, A. and Utsch, B., Z. Phys. B 21, 217 (1975).CrossRefGoogle Scholar
8. Hagemark, K. I., J. Solid State Chem. 16, 293 (1976).CrossRefGoogle Scholar
9. Vlasenko, L. S. and Watkins, G. D., Phys. Rev. B 72, 035203 (2005).CrossRefGoogle Scholar
10. Janotti, A. and Van deWalle, C. G., Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
11. Janotti, A. and Van de Walle, C. G., Phys. Rev. B 6, 44 (2007).Google Scholar
12. Look, D. C., Jones, R. L., Sizelove, J. R., Garces, N. Y., Giles, N. C., and Halliburton, L. E., Phys. Stat. Sol. a 195, 171 (2003).CrossRefGoogle Scholar
13. Puchert, M. K., Timbrell, P. Y., Lamb, R. N., J. Vac. Sci. Technol. A 14, 2220 (1996).CrossRefGoogle Scholar
14. Gupta, V., Mansingh, A., J. Appl. Phys. 80, 1063(1996).CrossRefGoogle Scholar
15. Fan, X. M., Lian, J. S. and Guo, Z. X., Appl. Surf. Sci. 239, 176 (2005).CrossRefGoogle Scholar
16. Yousif, A. K. and Haider, A. J., J. Eng. Tech. 29(1), 5864 (2011).Google Scholar
17. Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H. and Chua, S. J., J. Appl. Phys. 98, 013505 (2005).CrossRefGoogle Scholar
18. Kang, S.-J., Shin, H.-H. and Yoon, Y.-S., Journal of the Korean Physical Society 51(1), 183188 (2007).CrossRefGoogle Scholar
19. Scott, R. C., DLeedy, K., Bayraktaroglu, B., Look, D. C., Smith, D. J., Ding, D., Lu, X. F. and Zhang, Y. H., J. Electron. Mater. 40(4), 417428 (2011).CrossRefGoogle Scholar
20. Zhu, S., Su, C.-H., Lehoczky, S. L., Peters, P., George, M. A., Journal of Crystal Growth 211, 106110 (2000).CrossRefGoogle Scholar