Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-15T16:03:11.089Z Has data issue: false hasContentIssue false

Effects of Silica Sources on Nanoporous Organosilicate Films Templated with Tetraalkylammonium Cations

Published online by Cambridge University Press:  31 January 2011

Salvador Eslava
Affiliation:, IMEC, Leuven, Belgium
Jone Urrutia
Affiliation:, IMEC, Leuven, Belgium
Abheesh N. Busawon
Affiliation:, Imperial College London, London, United Kingdom
Mikhail R. Baklanov
Affiliation:, IMEC, Leuven, Belgium
Francesca Iacopi
Affiliation:, IMEC, Leuven, Belgium
Karen Maex
Affiliation:, IMEC, Leuven, Belgium
Christine E. A. Kirschhock
Affiliation:, Katholieke Universiteit Leuven, Centrum voor Oppervlaktechemie en Katalyse, Leuven, Belgium
Johan A. Martens
Affiliation:, Katholieke Universiteit Leuven, Centrum voor Oppervlaktechemie en Katalyse, Leuven, Belgium
Get access


Nanoporous organosilicate films have been recently prepared using tetraalkylammonium cations in acid and basic media, outperforming other materials. Resulting films using basic medium were called zeolite-inspired low-k dielectrics. Here we study the dependence of the properties of these films on the used silica sources: methyltrimethoxy silane (MTMS) and tetraethyl orthosilicate (TEOS). A set of experiments varying the MTMS:TEOS ratio were prepared in acid medium and characterized. A textural, physico-chemical, mechanical, and electrical characterization of this series of experiments is presented.

Research Article
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Dubois, G. Miller, R.D. Volksen, W. in Dielectric Films for Advanced Microelectronics, (Eds: Baklanov, M.R. Green, M. Maex, K.), John Wiley & Sons Inc, England 2007, Ch. 2.Google Scholar
2 Theije, F.K. de, Balkenende, A.R. Verheijen, M.A. Baklanov, M.R. Mogilnikov, K.P. Furukawa, Y. J. Phys. Chem. B 2003, 107, 4280.Google Scholar
3 Ree, M.H. Yoon, J.W. Heo, K.Y. J. Mater. Chem. 2006, 16, 685.Google Scholar
4 Nicole, L. Boissiere, C. Grosso, D. Quach, A. Sanchez, C. J. Mater. Chem. 2005, 15, 3598.Google Scholar
5 Eslava, S. Baklanov, M.R. Urrutia, J. C.E.Kirschhock, A. Maex, K. Martens, J.A. Adv. Funct. Mater. 2008, 20, 3110.Google Scholar
6 Eslava, S. Urrutia, J. Busawon, A. N. Baklanov, M. R. Iacopi, F. Aldea, S. Maex, K. Martens, J. A. Kirschhock, C. E. A., J. Am. Chem. Soc. 2008, 130, 17528.Google Scholar
7 Eslava, S. Baklanov, M.R. Kirschhock, C.E.A., Iacopi, F. Aldea, S. Maex, K. Martens, J.A. Langmuir 2007, 23, 12811.Google Scholar
8 Eslava, S. Delahaye, S. Baklanov, M.R. Iacopi, F. Kirschhock, C.E.A., Maex, K. Martens, J.A. Langmuir 2008, 24, 4894.Google Scholar
9 Baney, R.H. Itoh, M. Sakakibara, A. Suzuki, T. Chem. Rev. 1995, 95, 1409.Google Scholar
10 Baklanov, M.R. Mogilnikov, K.P. Le, Q.T. Microelectron. Eng. 2006, 83, 2287.Google Scholar
11 Eslava, S. Iacopi, F. Baklanov, M.R. Kirschhock, C.E.A. Maex, K. Martens, J.A. J. Am. Chem. Soc. 2007, 129, 9288.Google Scholar