Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T07:23:53.687Z Has data issue: false hasContentIssue false

Effects of Seeding Over the Microstructure and Stresses of Diamond Thin Films

Published online by Cambridge University Press:  10 February 2011

S. Gupta
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343, USA
G. Morell
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343, USA
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00931-3343, USA
D. R. Gilbert
Affiliation:
Dept. of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
R. K. Singh
Affiliation:
Dept. of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
Get access

Abstract

We have studied diamond films grown by electron cyclotron resonance-assisted chemical vapor deposition (ECR-CVD) at low pressure (1.0 Torr) and temperatures (550–700 °C). These films were grown on seeded Si (111) substrates with different diamond seed densities (0.225, 1.5, 2.3, and 3.1 × 109 nuclei/cm2). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy (RS) were employed to investigate the crystalline quality, diamond yield, and stresses developed in the films as a function of seeding density. Thermal interfacial stress, interactions across grain boundaries, and internal stress were considered in order to account for the total stress observed from the Raman band. We present correlations among seed density, relative amount of non-sp3 phase, O/C ratio, and total intrinsic stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Field, J. E., The Properties of diamonds (Academic, London, 1979).Google Scholar
2. Gerber, J., Sattel, S., Ehrhardt, H., Robertson, J., Wurzinger, P. and Pongratz, P., J. Appl. Phys. 79, 4388 (1996).Google Scholar
3. Yang, G. S., Aslam, M., Kuo, K. P., Reinhard, D. K. and Asmussen, J., J. Vac. Sci. Technol. B 13,1030 (1995) and references therein.Google Scholar
4. Makita, H., Nishiwara, K., Jiang, N., Hatta, A., Ito, T., and Hiraki, A., Thin Solid Films 281, 279 (1996).Google Scholar
5. Gilbert, D. R., Carasso, M. L., Demkowicz, P. A., Singh, R. K. and Adair, J. H., J. Electron. Mater. 26, 1326(1997).Google Scholar
6. Bergman, L. and Nemanich, R. J., J. Appl. Phys. 78, 6709 (1995).Google Scholar
7. Morell, G., Quiñones, O., Díaz, Y., Vargas, I. M., Weiner, B. R., and Katiyar, R. S., Diamond and Related Materials 7, 1029 (1998).Google Scholar
8. Shroder, R. E., Nemanich, R. J., and Glass, J. T., SPIE. Diamonds Optics. B 969,79 (1988).Google Scholar
9. Hyer, R. C., Green, M., and Sharma, S. C., Phys. Rev. B 49, 14573 (1994).Google Scholar
10. Singh, R. K., Gilbert, D. R., Tellshow, R., Holloway, P. H., Ochoa, R., Simmons, J. H. and Koba, R., Appl. Phys. Lett. 61, 2863 (1992).Google Scholar
11. Rats, D., Bimbault, L., Vendenbulcke, L., Herbin, R., and Badawi, K. F., J. Appl. Phys. 78, 4994 (1995).Google Scholar
12. Windischmann, H. and Epps, Glenn F., J. Appl. Phys. 69, 2231 (1991).Google Scholar
13. Hoffman, R. W., Surf. Interface Anal. 3, 62 (1981).Google Scholar
14. Nijhawan, S., Jankovsky, S. M. and Sheldon, B. W., J. Mater. Res. 14, 1046 (1999).Google Scholar