Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T15:17:52.474Z Has data issue: false hasContentIssue false

Effects of P Content on Morphology of Nanocrystals Induced by FIB Irradiation in Ni-P Amorphous Alloy

Published online by Cambridge University Press:  01 February 2011

Koji Sato
Affiliation:
sato.k.ae@m.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence laboratory, Nagatuta 4259, Midori-ku, Yokohama, 226-8503, Japan
Chiemi Ishiyama
Affiliation:
ishiyama.c.aa@m.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence laboratory, Nagatuta 4259 R2-18, Midori-ku, Yokohama, 226-8503, Japan
Masato Sone
Affiliation:
sone.m.aa@m.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence laboratory, Nagatuta 4259 R2-18, Midori-ku, Yokohama, 226-8503, Japan
Yakichi Higo
Affiliation:
yhigo@pi.titech.ac.jp, Tokyo Institute of Technology, Precision and Intelligence laboratory, Nagatuta 4259 R2-18, Midori-ku, Yokohama, 226-8503, Japan
Get access

Abstract

We studied the effects of phosphorus (P) on Ni nanocrystalline morphology formed by focused ion beam (FIB) irradiation for Ni-P amorphous alloy thin films. The P content in the amorphous alloy was varied from 8 to 12 wt.%. The nanocrystals induced by the FIB irradiation for Ni-11.8, 8.9, 7.9 wt.% amorphous alloy had an f.c.c. structure and showed unique crystallographic orientation relationships to the geometry of the focused ion beam, that is, {111}f.c.c. parallel to the irradiated plane and <110>f.c.c. parallel to the projected ion beam direction, respectively. The Ni nanocrystals precipitated like aggregates with decreasing of the P content. These results represent that the P content does not affect crystallographic orientation relationships, while influences the precipitation distribution of Ni nanocrystals generated by the FIB irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hono, K., Hiraga, K., and Wang, Q., Inoue, A., Acta. Metall. 40, (1992) 2137 Google Scholar
2. Tonejc, A. M., Ramsak, N., Prodan, A., Tonejc, A., Khalladi, A., Surinach, S., and Baro, M. D., Nanostruct. Mater. 12, (1999) 677.Google Scholar
3. Allen, C. W., Birtcher, R. C., Donnelly, S. E., Furuya, K., Ishikawa, N., and Song, M., Appl. Phys. Lett. 74, (1999) 2611.Google Scholar
4. Oliviero, E., Beaufort, M. F., and Barbot, J. F., J. Appl. Phys. 89, (2001) 5332.Google Scholar
5. Takeda, S. and Yamasaki, J., Phys. Rev. Lett. 83. (1999) 320.Google Scholar
6. Nagase, T., Umakoshi, Y., and Sumida, N., Mater. Sci. Eng. A 323, (2002) 218.Google Scholar
7. Tarumi, R., Takashima, K., and Higo, Y., Appl. Phys. Lett. 81, (2002) 4610 Google Scholar
8. Tarumi, R., Takashima, K., and Higo, Y., J. Appl. Phys. 94, (2003) 6108 Google Scholar
9. Okamoto, H., Gokhale, A. B. and Abbaschian, G. J., “Binary Alloy Phase Diagrams, Second Edition”, Ed Massalski, T. B. et al., ASM Intnl. (1990)Google Scholar
10. Farber, B., Cadel, E., Menand, A., Schmitz, G. and Kirchheim, R., Acta mater. 48, (2000) 789 Google Scholar